APPROVED JURISDICTIONAL DETERMINATION FORM U.S. Army Corps of Engineers This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook. #### **SECTION I: BACKGROUND INFORMATION** | A. | REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD) | February 3, 202 | 23 | |----|---|-----------------|----| |----|---|-----------------|----| ## B. DISTRICT OFFICE, FILE NAME, AND NUMBER: JD Form 1 of 3; SAC-2021-01129 Stokes Tract PROJECT LOCATION AND BACKGROUND INFORMATION: State: South Carolina County/parish/borough: Colleton County City: Walterboro Center coordinates of site (lat/long in degree decimal format): Lat. 33.012397 °, Long. -80.677664 °. Universal Transverse Mercator: Allen Creek Name of nearest waterbody: Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: N/A Name of watershed or Hydrologic Unit Code (HUC): 03050207 Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request. Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form. D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY): Office (Desk) Determination. Date: November 17, 2022, January 13, 2023 Field Determination. Date(s): March 9, 2022 **SECTION II: SUMMARY OF FINDINGS** A. RHA SECTION 10 DETERMINATION OF JURISDICTION. There Are no "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area. [Required] Waters subject to the ebb and flow of the tide. Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce. B. CWA SECTION 404 DETERMINATION OF JURISDICTION. There Are no "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required] 1. Waters of the U.S. a. Indicate presence of waters of U.S. in review area (check all that apply): 1 TNWs, including territorial seas Wetlands adjacent to TNWs Relatively permanent waters² (RPWs) that flow directly or indirectly into TNWs Non-RPWs that flow directly or indirectly into TNWs Wetlands directly abutting RPWs that flow directly or indirectly into TNWs Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs Impoundments of jurisdictional waters Isolated (interstate or intrastate) waters, including isolated wetlands b. Identify (estimate) size of waters of the U.S. in the review area: width (ft) and/or Non-wetland waters: linear feet: acres. Wetlands: c. Limits (boundaries) of jurisdiction based on: Pick List Elevation of established OHWM (if known): Non-regulated waters/wetlands (check if applicable):³ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional. Explain: The project review area includes eleven (11) wetlands that were determined to be isolated, non-jurisdictional wetlands. The wetlands, NJD-A, -B, -C, -D, -E, -F, -G, -H, -I, -J, and -K, are surrounded by uplands, positioned lower in elevation than the surrounding uplands, and have no ditches or swales flowing out of them that would provide a surface hydrologic connection to a water of the U.S. Additionally, there are no apparent ecological interconnectivity from the wetlands to a water of the US. There also appears to be no subsurface hydrologic connection, and no physical, ¹ Boxes checked below shall be supported by completing the appropriate sections in Section III below. ² For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least "seasonally" (e.g., typically 3 months). Supporting documentation is presented in Section III.F. chemical, or biological connection, to waters of the US. Therefore, Wetlands NJD-A, -B, -C, -D, -E, -F, -G, -H, -I, -J, and -K, which total 21.98 acres, were determined to be isolated, non-jurisdictional and not subject to regulation under Section 404 of the CWA. #### SECTION III: CWA ANALYSIS #### A. TNWs AND WETLANDS ADJACENT TO TNWs The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below. | 1 | TN | XX/ | |----|-----|-----| | 1. | 117 | ٧V | Identify TNW: Summarize rationale supporting determination: #### 2. Wetland adjacent to TNW Summarize rationale supporting conclusion that wetland is "adjacent": #### B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY): This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under *Rapanos* have been met. The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are "relatively permanent waters" (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4. A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law. If the waterbody⁴ is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below. #### 1. Characteristics of non-TNWs that flow directly or indirectly into TNW #### (i) General Area Conditions: Watershed size: Pick List Drainage area: Pick List Average annual rainfall: inches Average annual snowfall: inches #### (ii) Physical Characteristics: (a) Relationship with TNW: Tributary flows directly into TNW. Tributary flows through **Pick List** tributaries before entering TNW. Project waters are Pick List aerial (straight) miles from TNW. Pick List aerial (straight) miles from RPW. Project waters cross or serve as state boundaries. Explain: ⁴ Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West. | | | Identify flow route to TNW ⁵ : Tributary stream order, if known: | |-------|-----|--| | | (b) | General Tributary Characteristics (check all that apply): Tributary is: Natural Artificial (man-made). Explain: Manipulated (man-altered). Explain: | | | | Tributary properties with respect to top of bank (estimate): Average width: feet Average depth: feet Average side slopes: Pick List. | | | | Primary tributary substrate composition (check all that apply): Silts Sands Concrete Cobbles Gravel Muck Bedrock Vegetation. Type/% cover: Other. Explain: | | | | Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain: Presence of run/riffle/pool complexes. Explain: Tributary geometry: Pick List Tributary gradient (approximate average slope): % | | | (c) | Flow: Tributary provides for: Pick List Estimate average number of flow events in review area/year: Pick List Describe flow regime: Other information on duration and volume: | | | | Surface flow is: Pick List. Characteristics: | | | | Subsurface flow: Pick List. Explain findings: Dye (or other) test performed: | | | | Tributary has (check all that apply): Bed and banks OHWM ⁶ (check all indicators that apply): clear, natural line impressed on the bank changes in the character of soil shelving vegetation matted down, bent, or absent leaf litter disturbed or washed away sediment deposition water staining other (list): Discontinuous OHWM. ⁷ Explain: | | | | If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply): High Tide Line indicated by: | | (iii) | | emical Characteristics: racterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed
characteristics, etc.). Explain: | ⁵ Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW. ⁶A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody's flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break. ⁷Ibid. | | | | Ider | ntify specific pollutants, if known: | |------|-----|--------|--------------------|--| | (iv) | Bio | logica | | Riparian corridor. Characteristics (type, average width): Wetland fringe. Characteristics: Habitat for: Federally Listed species. Explain findings: Fish/spawn areas. Explain findings: Other environmentally-sensitive species. Explain findings: Aquatic/wildlife diversity. Explain findings: | | | 2. | Cha | ract | eristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW | | | | (i) | (a) | Sical Characteristics: General Wetland Characteristics: Properties: Wetland size: acres Wetland type. Explain: Wetland quality. Explain: Project wetlands cross or serve as state boundaries. Explain: | | | | | (c) | General Flow Relationship with Non-TNW: Flow is: Pick List. Explain: Surface flow is: Pick List Characteristics: Subsurface flow: Pick List. Explain findings: Dye (or other) test performed: Wetland Adjacency Determination with Non-TNW: Directly abutting Not directly abutting Discrete wetland hydrologic connection. Explain: Ecological connection. Explain: Separated by berm/barrier. Explain: Proximity (Relationship) to TNW | | | | | Che
Cha
Ider | Project wetlands are Pick List river miles from TNW. Project waters are Pick List aerial (straight) miles from TNW. Flow is from: Pick List. Estimate approximate location of wetland as within the Pick List floodplain. emical Characteristics: racterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain: https://doi.org/10.1001 | | | 3. | Cha | ract
All | ☐ Federally Listed species. Explain findings: ☐ Fish/spawn areas. Explain findings: ☐ Other environmentally-sensitive species. Explain findings: ☐ Aquatic/wildlife diversity. Explain findings: eristics of all wetlands adjacent to the tributary (if any) wetland(s) being considered in the cumulative analysis: Pick List proximately () acres in total are being considered in the cumulative analysis. | Directly abuts? (Y/N) Size (in acres) Directly abuts? (Y/N) Summarize overall biological, chemical and physical functions being performed: #### C. SIGNIFICANT NEXUS DETERMINATION A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus. Size (in acres) Draw connections between the features documented and the effects on the TNW, as identified in the *Rapanos* Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example: - Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW? - Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW? - Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs? - Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW? Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below: - 1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D: - 2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: - 3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: | D. | DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALI | |----|---| | | THAT APPLY): | | 1. | TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area: | |----
---| | | TNWs: linear feet width (ft), Or, acres. | | | Wetlands adjacent to TNWs: acres. | | 2. | RPWs that flow directly or indirectly into TNWs. | | | Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that | | | tributary is perennial: . | | | Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are | | | jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows | | | seasonally: . | | | Provide estimates for jurisdictional waters in the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: . | |-----------|---| | 3. | Non-RPWs ⁸ that flow directly or indirectly into TNWs. Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C. | | | Provide estimates for jurisdictional waters within the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: . | | 4. | Wetlands directly abutting an RPW that flow directly or indirectly into TNWs. Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands. Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: | | | Wetlands directly abutting an RPW where tributaries typically flow "seasonally." Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: | | | Provide acreage estimates for jurisdictional wetlands in the review area: acres. | | 5. | Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs. Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisidictional. Data supporting this conclusion is provided at Section III.C. | | | Provide acreage estimates for jurisdictional wetlands in the review area: acres. | | 6. | Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs. Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C. | | | Provide estimates for jurisdictional wetlands in the review area: acres. | | 7. | Impoundments of jurisdictional waters. As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional. Demonstrate that impoundment was created from "waters of the U.S.," or Demonstrate that water meets the criteria for one of the categories presented above (1-6), or Demonstrate that water is isolated with a nexus to commerce (see E below). | | DE
SUC | DLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, GRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY CH WATERS (CHECK ALL THAT APPLY): 10 which are or could be used by interstate or foreign travelers for recreational or other purposes. from which fish or shellfish are or could be taken and sold in interstate or foreign commerce. which are or could be used for industrial purposes by industries in interstate commerce. Interstate isolated waters. Explain: Other factors. Explain: | | Ide | ntify water body and summarize rationale supporting determination: | E. ⁸See Footnote # 3. To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook. Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos. | | | vide estimates for jurisdictional waters in the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: Wetlands: acres. | |----|--------------------|---| | F. | | N-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY): If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements. Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce. Prior to the Jan 2001 Supreme Court decision in "SWANCC," the review area would have been regulated based solely on the "Migratory Bird Rule" (MBR). Waters do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction. Explain: Other: (explain, if not covered above): | | | fact | vide acreage estimates for non-jurisdictional waters in the review area, where the <u>sole</u> potential basis of jurisdiction is the MBR ors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional ment (check all that apply): Non-wetland waters (i.e., rivers, streams): linear feet width (ft). Lakes/ponds: acres. Other non-wetland waters: acres. List type of aquatic resource: . Wetlands: 21.98 acres | | | | vide acreage estimates for non-jurisdictional waters in the review area that do not meet the "Significant Nexus" standard, where such ading is required for jurisdiction (check all that apply): Non-wetland waters (i.e., rivers, streams): linear feet, width (ft). Lakes/ponds: acres. Other non-wetland waters: acres. List type of aquatic resource: . Wetlands: acres. | | | SUPI
and
LLC | PORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked requested, appropriately reference sources below): Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: Lowrys Environmental & Ecological Services, Data sheets prepared/submitted by or on behalf of the applicant/consultant. Concurs with conclusions Office concurs with data sheets/delineation report. Office does not concur with data sheets/delineation report. Data sheets prepared by the Corps: Corps navigable waters' study: U.S. Geological Survey Hydrologic Atlas: | | | | USGS NHD data. USGS 8 and 12 digit HUC maps. U.S. Geological Survey map(s). Cite scale & quad name: USDA Natural Resources Conservation Service Soil Survey. Citation: Lynchburg loamy fine sand, Rains sandy loam National wetlands inventory map(s). Cite name: PFO. State/Local wetland inventory map(s): FEMA/FIRM maps: | B. ADDITIONAL COMMENTS TO SUPPORT JD: The project area includes eleven (11) wetlands, NJD-A, -B, -C, -D, -E, -F, -G, -H, -I, -J, and -K, which total 21.98 acres, that were determined to be isolated, non-jurisdictional and not subject to regulation under Section 404 of the CWA. The jurisdictional status of the remaining wetlands and aquatic resources located within the project review area are discussed on the remaining forms. #### APPROVED JURISDICTIONAL DETERMINATION FORM **U.S. Army Corps of Engineers** This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook. #### **SECTION I: BACKGROUND INFORMATION** ### A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): February 3, 2023 | | • / | |------|--| | B. | DISTRICT OFFICE, FILE
NAME, AND NUMBER: JD Form 2 of 3; SAC-2021-01129 Stokes Tract | | C. | PROJECT LOCATION AND BACKGROUND INFORMATION: State: South Carolina County/parish/borough: Colleton County City: Walterboro Center coordinates of site (lat/long in degree decimal format): Lat. 33.012397°, Long80.677664°. Universal Transverse Mercator: Name of nearest waterbody: Allen Creek Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Ashepoo River Name of watershed or Hydrologic Unit Code (HUC): 03050207 Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request. Check if other sites (e.g., offsite mitigation sites, disposal sites, etc) are associated with this action and are recorded on a different JD form. | | D. | REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY): Office (Desk) Determination. Date: November 17, 2022, January 13, 2023 Field Determination. Date(s): March 9, 2022 | | | CTION II: SUMMARY OF FINDINGS RHA SECTION 10 DETERMINATION OF JURISDICTION. | | revi | re Are no "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the ew area. [Required] Waters subject to the ebb and flow of the tide. Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce. Explain: | | В. | CWA SECTION 404 DETERMINATION OF JURISDICTION. | | The | re Are "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required] | | | 1. Waters of the U.S. a. Indicate presence of waters of U.S. in review area (check all that apply): TNWs, including territorial seas Wetlands adjacent to TNWs Relatively permanent waters ² (RPWs) that flow directly or indirectly into TNWs Non-RPWs that flow directly or indirectly into TNWs Wetlands directly abutting RPWs that flow directly or indirectly into TNWs Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs Impoundments of jurisdictional waters Isolated (interstate or intrastate) waters, including isolated wetlands | | | b. Identify (estimate) size of waters of the U.S. in the review area: Non-wetland waters: Tributary Allen Creek linear feet: 1,600 width (ft) and/or acres. Wetlands: Wetlands WAA: 48.98 ac; WN: 3.2 acres; WY: 0.58 ac; WZ: 1.53 ac; WW: 12.31 ac; WP: 4.88 ac; WU: 1.22 ac; WT: 4.42 ac; WV: 5.60 ac; WH: 14.80 ac; WG: 2.89 ac; and WF: 1.19 ac; Total: 101.6 acres | | | c. Limits (boundaries) of jurisdiction based on: 1987 Delineation Manual Established by OHWM Elevation of established OHWM (if known): | | | 2. Non-regulated waters/wetlands (check if applicable): ³ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional | Explain: There are two linear features located within the project review. Linear feature #1 is a roadside feature that runs along an interior direct road. Linear feature #1 appears to have been excavated from the edge of wetlands WY and WZ, then through uplands between these wetlands and wetland WAA. The portion of the Linear Feature #1 located within uplands does not have a defined bed or bank, no evidence of a Ordinary High Water mark and no ¹ Boxes checked below shall be supported by completing the appropriate sections in Section III below. ² For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least "seasonally" (e.g., typically 3 months). ³ Supporting documentation is presented in Section III.F. evidence of relatively permanent flow. The second linear feature, Linear feature #2, flows through the majority of the project review area. This linear feature is a roadside ditch that flows adjacent to an interior road. The Linear feature #2 appears to have been excavated from both wetlands and uplands along its length. The linear feature does not have a defined bed or bank, has no evidence of an Ordinary High Water mark, and does not have relatively permanent flow. Based on this information, Linear features #1 and #2 are non-jurisdictional and not subject to regulation under Section 404 of the Clean Water Act. While these features are non-jurisdictional, they do provide a hydrologic connection from onsite wetlands to waters of the U.S. The jurisdictional status of these wetlands is discussed on this form. #### SECTION III: CWA ANALYSIS #### A. TNWs AND WETLANDS ADJACENT TO TNWs The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below. | 1. | TNW Identify TNW: | | |----|---|--| | | Summarize rationale supporting determination: . | | | 2. | Wetland adjacent to TNW Summarize rationale supporting conclusion that wetland is "adjacent": | | #### B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY): This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under *Rapanos* have been met. The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are "relatively permanent waters" (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4. A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law. If the waterbody⁴ is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below. 1. Characteristics of non-TNWs that flow directly or indirectly into TNW | **** | Perennial F | RPW – Allen | Creek lo | ocated both | onsite and | offsite | **** | |------|-------------|-------------|----------|-------------|------------|---------|------| |------|-------------|-------------|----------|-------------|------------|---------|------| # (i) General Area Conditions: Watershed size: 91,357 acres Drainage area: 1,871 acres Average annual rainfall: 52 inches Average annual snowfall: <1 inches #### (ii) Physical Characteristics: | (a) | Re | lation | ship | with 7 | <u> NW:</u> | | | |-----|----|--------|------|--------|-------------|------|------| | | | | | | directly | into | TNW. | ⁴ Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West. | | Tributary flows through 3 tributaries before entering TNW. | |-----
--| | | Project waters are 20-25 river miles from TNW. Project waters are 1 (or less) river miles from RPW. Project waters are 20-25 aerial (straight) miles from TNW. Project waters are 1 (or less) aerial (straight) miles from RPW. Project waters cross or serve as state boundaries. Explain: | | | Identify flow route to TNW ⁵ : Wetlands to onsite RPW to offsite RPWs to the Ashepoo River, the TNW. Tributary stream order, if known: | | (b) | General Tributary Characteristics (check all that apply): Tributary is: | | | Tributary properties with respect to top of bank (estimate): Average width: Approx 8 feet Average depth: Approx 4-6 feet Average side slopes: 2:1. | | | Primary tributary substrate composition (check all that apply): Silts | | | Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain: The tributary appeared to be stable on review of offsite resource information, the offsite portions of the tributary are likely stable as the surrounding ested and mostly undeveloped. Presence of run/riffle/pool complexes. Explain: None Tributary geometry: Relatively straight Tributary gradient (approximate average slope): 1% | | (c) | Flow: Tributary provides for: Perennial Estimate average number of flow events in review area/year: 20 (or greater) Describe flow regime: Other information on duration and volume: | | | Surface flow is: Confined. Characteristics: | | | Subsurface flow: Uknown. Explain findings: | | | Tributary has (check all that apply): Bed and banks OHWM ⁶ (check all indicators that apply): clear, natural line impressed on the bank changes in the character of soil destruction of terrestrial vegetation the presence of wrack line sediment sorting sediment deposition destruction of terrestrial vegetation the presence of wrack line sediment sorting sediment sorting sediment deposition destruction of terrestrial vegetation the presence of wrack line sediment sorting sediment sorting sediment deposition destruction of terrestrial vegetation the presence of wrack line sediment sorting sediment sorting sediment deposition destruction of terrestrial vegetation the presence of wrack line sediment sorting sediment sorting sediment sorting sediment deposition destruction of terrestrial vegetation the presence of litter and debris destruction of terrestrial vegetation the presence of wrack line sediment sorting se | | | If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply): High Tide Line indicated by: Mean High Water Mark indicated by: | ⁵ Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW. ⁶A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody's flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break. ⁷Ibid. | | oil or scum line a fine shell or debri physical marking: tidal gauges other (list): | s deposits (foreshore) | ☐ survey to available datum; ☐ physical markings; ☐ vegetation lines/changes in vegetation types. | |--|--|--|--| | Ch | emical Characteristics:
aracterize tributary (e.g., water c
Explain: The water quality app
ntify specific pollutants, if know | peared to be good. | oily film; water quality; general watershed characteristics, etc.). | | small fish, insects | , and amphibians. Larger wild | tics (type, average widtes: Explain findings: findings: sitive species. Explain Explain findings: The dlife such as mammals | n): . | | 2. Charac | teristics of wetlands adjacent to | o non-TNW that flow | directly or indirectly into TNW | | (a) | ysical Characteristics: General Wetland Characteristi Properties: and size: Wetlands WAA: 48.9 | | VY: 0.58 ac; WZ: 1.53 ac; WW: 12.31 ac; WP: 4.88 ac; WU: | | | | H: 14.80 ac; WG: 2.89 prested .
Good. | ac; and WF: 1.19 ac; Total: 101.6 acres | | flows directl | | xplain: Wetlands WY a
W, Allen Creek. The f | and WZ flow to non-jurisdictional Linear feature #1 which low from Wetlands WY to WZ to Allen Creek may occur resent. | | feature #2 w
flows directl | hich flows offsite to a roadside | conveyance along Rist
f Allen Creek. The flow | WV, WH, WG and WF flow to non-jurisdictional Linear
ther Mountain Road, under I-95, and then continues where if
w from the wetlands to Allen Creek may occur seasonally | | to an existin
appears to f | g railroad track. Based on a re | view of LiDAR, the of | offsite where if connects to a linear feature that flows adjacent fsite linear feature flows northeast towards Allen Creek and lands to Allen Creek may occur seasonally and/or after rain | | | Surface flow is: Confined Characteristics: | | | | | Subsurface flow: Unknown . I Dye (or other) test perfe | | | | feature #1 w
non-jurisdic
then continu | ☑ Discrete wetland hydro
hich flows directly into the ons
tional Linear feature #2 which
es where if flows directly into | WY, WZ, WW, WP, Vologic connection. Exploite perennial RPW, Al flows offsite to a road a downstream portion | WU, WT, WV, WH, WG and WF. ain: Wetlands WY and WZ flow to non-jurisdictional Linear len Creek. WW, WP, WU, WT, WV, WH, WG and WF flow to side conveyance along Risher Mountain Road, under I-95, and of Allen Creek. Wetland WN appears to flow offsite where if road track. Based on a review of LiDAR, the offsite linear | | | s northeast towards Allen Cree | | | | | ☐ Ecological connection. Explain: . | |------|---| | | Separated by berm/barrier. Explain: | | | (d) Proximity (Relationship) to TNW | | | Project wetlands are 20-25 river miles from TNW. | | | Project waters are 20-25 aerial (straight) miles from TNW. | | | Flow is from: wetland to navigable water. | | | Estimate approximate location of wetland as within the Pick List floodplain. | | (ii) | Chemical Characteristics: | | | Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed | | | characteristics; etc.). Explain: The water quality appears to be good. | | | Identify specific pollutants, if known: The drainage area appears to be mostly undeveloped. | | (ii | i) Biological Characteristics. Wetland supports (check all that apply): | | (1. | Riparian buffer. Characteristics (type, average width): | | | Vegetation type/percent cover. Explain: . | | | Habitat for: | | | Federally Listed species. Explain findings: | | | Fish/spawn areas. Explain findings: | | | Other environmentally-sensitive species. Explain findings: | | | Aquatic/wildlife diversity. Explain findings: The wetlands may be utilized by various species of insects, | | an | aphibians, reptiles, mammals and birds, all of which may use the wetlands for all or part of their lives, such as for | | | raging, nesting and/or for shelter. | | 101 | mgmg, nesting and/or 101 shouter. | | | | #### 3. Characteristics of all wetlands adjacent to
the tributary (if any) All wetland(s) being considered in the cumulative analysis: 14 Approximately (435.78) acres in total are being considered in the cumulative analysis. For each wetland, specify the following: | Directly abuts? (Y/N) | Size (in acres) | Directly abuts? (Y/N) | Size (in acres) | |-----------------------|-----------------|-----------------------|-----------------| | Offsite 1 (Y) | 282 | | | | Offsite 2 (Y) | 52.5 | | | | WAA (Y) | 48.98 | | | | WY (N) | 0.58 | | | | WZ (N) | 1.53 | | | | WW (N) | 12.31 | | | | WP (N) | 4.88 | | | | WU (N) | 1.22 | | | | WT (N) | 4.42 | | | | WV (N) | 5.6 | | | | WH (N) | 14.8 | | | | WG (N) | 2.89 | | | | WF (N) | 1.19 | | | | WN (N) | 3.2 | | | Summarize overall biological, chemical and physical functions being performed: The drainage area subject to this Approved Jurisdictional Basis Form 2 is approximately 1,870 acres in size. The subject drainage area includes approximately 435.78 acres of wetlands. Onsite wetland WAA and Offsite Wetlands 1 and 2 abut the tributary, Allen Creek. Onsite wetlands WW, WP, WU, WT, WV, WH, WG and WF do not abut the tributary, but have a hydrologic connection to the tributary through onsite and offsite non-jurisdictional linear conveyances. Wetlands WY and WZ flow to non-jurisdictional Linear feature #1 which flows directly into the onsite perennial RPW, Allen Creek. WW, WP, WU, WT, WV, WH, WG and WF flow to nonjurisdictional Linear feature #2 which flows offsite to a roadside conveyance along Risher Mountain Road, under I-95, and then continues where if flows directly into a downstream portion of Allen Creek. Wetland WN flows to an offsite linear feature that flows into Allen Creek. The wetlands located within the drainage area of this reach included in this cumulative review provide a variety of functions that are important for the downstream waters. The wetlands not only provide habitat for various aquatic and terrestrial organisms, including a variety of insects, amphibians, reptiles, mammals and birds, but are also a source of food, nutrients, and carbon for organisms located downstream. The wetlands are especially important for the water quality of a watershed. Water runoff from adjacent uplands may contain pollutants, sediments, excess nutrients, etc. The runoff water that flows through the wetlands before entering the tributaries have the opportunity to be filtered out prior to flowing to downstream TNWs. In addition, excess water can be temporarily stored thereby minimizing potential flooding of downstream areas and can also slowly release water downstream to maintain seasonal flow volumes. Runoff water may also transport organisms, nutrients, and carbon from the wetlands into the tributaries, which continue to flow to downstream TNWs. #### C. SIGNIFICANT NEXUS DETERMINATION A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus. . Draw connections between the features documented and the effects on the TNW, as identified in the *Rapanos* Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example: - Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW? - Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW? - Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs? - Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW? Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below: - 1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D: - 2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: - 3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: The drainage area subject to this Approved Jurisdictional Basis Form 2 is approximately 1,870 acres in size. The subject drainage area includes approximately 435.78 acres of wetlands. Onsite wetland WAA and Offsite Wetlands 1 and 2 abut the tributary, Allen Creek. Onsite wetlands WW, WP, WU, WT, WV, WH, WG and WF do not abut the tributary, but have a hydrologic connection to the tributary through onsite and offsite non-jurisdictional linear conveyances. Wetlands WY and WZ flow to non-jurisdictional Linear feature #1 which flows directly into the onsite perennial RPW, Allen Creek. WW, WP, WU, WT, WV, WH, WG and WF flow to non-jurisdictional Linear feature #2 which flows offsite to a roadside conveyance along Risher Mountain Road, under I-95, and then continues where if flows directly into a downstream portion of Allen Creek. Wetland WN flows to an offsite linear feature that flows into Allen Creek Regardless of whether the wetlands are abutting or non-abutting, wetlands located within the drainage area of this relevant reach of the perennial Tributary, Allen Creek, provide a variety of functions that are important for the downstream waters and the watershed as a whole. The wetlands not only provide habitat for various aquatic and terrestrial organisms, including a variety of insects, amphibians, reptiles, mammals and birds, but are also a source of food, nutrients, and carbon for organisms located downstream. The wetlands are especially important for the water quality of a watershed. Water runoff from adjacent uplands that may contain pollutants, sediments, excess nutrients, etc., that flows through the wetlands before entering the tributaries has the opportunity to be filtered out prior to flowing to downstream TNWs. In addition, excess water can temporarily be stored thereby minimizing potential flooding of downstream areas and can also slowly release water downstream to maintain seasonal flow volumes. Runoff water may also transport organisms, nutrients, and carbon from the wetlands into the tributaries, which continue to flow to downstream TNWs. The wetlands are especially important for the quality of a watershed. The project review area is located within the Ashepoo River, HUC 03050207-08. According to the SCDHEC Watershed Information for the Ashepoo River, there is a low to moderate potential for growth for much of this watershed, which contains a large portion the Town of Walterboro. A review of recent aerial photographs show that little to no development is occurring within the drainage area. The drainage area consists primarily of forested and agricultural lands. The non-abutting wetlands, WW, WP, WU, WT, WV, WH, WG and WF within the drainage area have a significant nexus to the downstream TNW as they provide a source of carbon and nutrients, can perform water quality functions, can provide water storage capabilities, can maintain seasonal flow volumes, and have the ability to transport organisms, carbon, nutrients, sediments, clean water, as well as any pollutants that may be present or could become present, to downstream TNWs. When wetlands are filled or altered, many of the services that they provide may be lost and the loss of those services affects downstream waters and TNWs. - D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY): - 1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area: | | TNWs: linear feet width (ft), Or, acres. Wetlands adjacent to TNWs: acres. | |----
--| | 2. | RPWs that flow directly or indirectly into TNWs. Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial: The onsite tributary is Allen Creek. It has a defined bed and bank, had flowing water at the time of the site visit, is visible in aerial photographs and on Lidar, appears as a blue line tributary on topographic maps and has a drainage area of approximately 1,870 acres with approximately 434 acres of wetlands. Based on this information, the onsite tributary, Allen Creek, was determined to have perennial flow. | | | Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: | | | Provide estimates for jurisdictional waters in the review area (check all that apply): Tributary waters: Approximately 1,600 linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: . | | 3. | Non-RPWs ⁸ that flow directly or indirectly into TNWs. Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C. | | | Provide estimates for jurisdictional waters within the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: . | | 4. | Wetlands directly abutting an RPW that flow directly or indirectly into TNWs. Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands. Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: The onsite tributary, Allen Creek, flows through Wetland WAA, thus the tributary and wetland share a boundary and the wetland has a direct hydrologic connection to the tributary. Therefore, Wetland WAA abuts Allen Creek. | | | Wetlands directly abutting an RPW where tributaries typically flow "seasonally." Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: | | | Provide acreage estimates for jurisdictional wetlands in the review area: 48.98 acres. | | 5. | Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs. Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisidictional. Data supporting this conclusion is provided at Section III.C. | | WP | Provide acreage estimates for jurisdictional wetlands in the review area: WN: 3.2 ac; WY: 0.58 ac; WZ: 1.53 ac; WW: 12.31 ac; : 4.88 ac; WU: 1.22 ac; WT: 4.42 ac; WV: 5.60 ac; WH: 14.80 ac; WG: 2.89 ac; and WF: 1.19 ac; Total: 51.62 acres | | 6. | Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs. Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C. | | | Provide estimates for jurisdictional wetlands in the review area: acres. | | 7. | Impoundments of jurisdictional waters. ⁹ | $^{^8} See$ Footnote # 3. 9 To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook. | | As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional. Demonstrate that impoundment was created from "waters of the U.S.," or Demonstrate that water meets the criteria for one of the categories presented above (1-6), or Demonstrate that water is isolated with a nexus to commerce (see E below). | |-----|---| | Е. | ISOLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY SUCH WATERS (CHECK ALL THAT APPLY): 10 which are or could be used by interstate or foreign travelers for recreational or other purposes. from which fish or shellfish are or could be taken and sold in interstate or foreign commerce. which are or could be used for industrial purposes by industries in interstate commerce. Interstate isolated waters. Explain: Other factors. Explain: | | | Identify water body and summarize rationale supporting determination: | | | Provide estimates for jurisdictional waters in the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: Wetlands: acres. | | F. | NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY): ☐ If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements. ☐ Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce. ☐ Prior to the Jan 2001 Supreme Court decision in "SWANCC," the review area would have been regulated based solely on the "Migratory Bird Rule" (MBR). ☐ Waters do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction. Explain: ☐ Other: (explain, if not covered above): Refer to Section II.B.2 of this form 2. | | | Provide acreage estimates for non-jurisdictional waters in the review area, where the <u>sole</u> potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply): Non-wetland waters (i.e., rivers, streams): linear feet width (ft). Lakes/ponds: acres. Other non-wetland waters: acres. List type of aquatic resource: Wetlands: | | | Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction (check all that apply): Non-wetland waters (i.e., rivers, streams): linear feet, width (ft). Lakes/ponds: acres. Other non-wetland waters: acres. List type of aquatic resource: Wetlands: acres. | | SEG | CTION IV: DATA SOURCES. | | | SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below): | | | □ Data sheets prepared/submitted by or on behalf of the applicant/consultant. Concurs with conclusions □ Office concurs with data sheets/delineation report. □ Office does not concur with data sheets/delineation report. □ Data sheets prepared by the Corps: . | $^{^{10}}$ Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos. | | Corps navigable waters' study: . | |-------------|--| | | U.S. Geological Survey Hydrologic Atlas: . | | | USGS NHD data. | | | USGS 8 and 12 digit HUC maps. | | | U.S. Geological Survey map(s). Cite scale & quad name: . | | \boxtimes | USDA Natural Resources Conservation Service Soil Survey. Citation: Lynchburg loamy fine sand, Rains sandy loam | | \boxtimes | National wetlands inventory map(s). Cite name: PFO. | | | State/Local wetland inventory map(s): . | | | FEMA/FIRM maps: . | | | 100-year Floodplain Elevation is: (National Geodectic Vertical Datum of 1929) | | \boxtimes | Photographs: Aerial (Name & Date): Google, Reg Viewer. | | | or Other (Name & Date): | | | Previous determination(s). File no. and date of response letter: . | | | Applicable/supporting case law: . | | | Applicable/supporting scientific literature: . | | \boxtimes | Other information (please specify): Reg Viewer, LiDAR. | B. ADDITIONAL COMMENTS TO SUPPORT JD: Wetlands WAA, WN, WY, WZ, WW, WP, WU, WT, WV, WH, WG and WF and the tributary, Allen Creek, were determined to be jurisdictional and subject to regulation under
Section 404 of the CWA. The project review area also includes two linear features that were determine to be non-jurisdictional and not subject to regulation under Section 404 of the CWA. The jurisdictional status of the remaining wetlands located within the project review area are discussed on the remaining forms. #### APPROVED JURISDICTIONAL DETERMINATION FORM **U.S. Army Corps of Engineers** This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook. # <u>SECTION I: BACKGROUND INFORMATION</u> A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): February 3, 2023 | В. | DISTRICT OFFICE. | . FILE NAME. | AND NUMBER: | : JD Form 3 of 3: | SAC-2021-01129 Stokes | Tract | |----|------------------|--------------|-------------|-------------------|-----------------------|-------| | В. | DISTRICT OFFICE, FILE NAME, AND NUMBER: JD Form 3 of 3; SAC-2021-01129 Stokes Tract | |----------|---| | c. | PROJECT LOCATION AND BACKGROUND INFORMATION: State: South Carolina County/parish/borough: Colleton County City: Walterboro Center coordinates of site (lat/long in degree decimal format): Lat. 33.012397°, Long80.677664°. Universal Transverse Mercator: Name of nearest waterbody: Jones Swamp Creek | | | Name of nearest Traditional Navigable Water (TNW) Into which the aquatic resource flows: Ashepoo River Name of watershed or Hydrologic Unit Code (HUC): 03050207 Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request. Check if other sites (e.g., offsite mitigation sites, disposal sites, etc) are associated with this action and are recorded on a different JD form. | | D. | REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY): ☐ Office (Desk) Determination. Date: November 17, 2022, January 13, 2023 ☐ Field Determination. Date(s): March 9, 2022 | | SE
A. | CTION II: SUMMARY OF FINDINGS
RHA SECTION 10 DETERMINATION OF JURISDICTION. | | | Are no "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the lew area. [Required] Waters subject to the ebb and flow of the tide. Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce. Explain: | | В. | CWA SECTION 404 DETERMINATION OF JURISDICTION. | | The | ere Are "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required] | | | 1. Waters of the U.S. a. Indicate presence of waters of U.S. in review area (check all that apply): TNWs, including territorial seas Wetlands adjacent to TNWs Relatively permanent waters² (RPWs) that flow directly or indirectly into TNWs Non-RPWs that flow directly or indirectly into TNWs Wetlands directly abutting RPWs that flow directly or indirectly into TNWs Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs Impoundments of jurisdictional waters Isolated (interstate or intrastate) waters, including isolated wetlands | | | b. Identify (estimate) size of waters of the U.S. in the review area: Non-wetland waters: linear feet: width (ft) and/or acres. Wetlands: Wetlands WL: 5.84 acres; WD: 19.51 acres; and WB: 1.29 acres; Total: 26.64 acres | | | c. Limits (boundaries) of jurisdiction based on: 1987 Delineation Manual Elevation of established OHWM (if known): | | | 2. Non-regulated waters/wetlands (check if applicable): ³ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional Explain: | | SEG | CTION III: CWA ANALYSIS | #### A. TNWs AND WETLANDS ADJACENT TO TNWs ¹ Boxes checked below shall be supported by completing the appropriate sections in Section III below. ² For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least "seasonally" (e.g., typically 3 months). ³ Supporting documentation is presented in Section III.F. The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below. | 1. | TNW Identify TNW: . | | |----|---|--| | | Summarize rationale supporting determination: . | | | 2. | Wetland adjacent to TNW Summarize rationale supporting conclusion that wetland is "adjacent": | | #### B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY): This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under *Rapanos* have been met. The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are "relatively permanent waters" (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4. A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law. If the waterbody⁴ is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below. #### 1. Characteristics of non-TNWs that flow directly or indirectly into TNW | (i) | Ger | neral Area Conditions: | |------|-----|--| | | Wat | tershed size: Pick List | | | Dra | inage area: Pick List | | | Ave | erage annual rainfall: inches | | | Ave | erage annual snowfall: inches | | (ii) | Phy | vsical Characteristics: | | ` ' | (a) | Relationship with TNW: | | | . , | Tributary flows directly into TNW. | | | | Tributary flows through Pick List tributaries before entering TNW. | | | | Project waters are Pick List river miles from TNW. | | | | Project waters are Pick List river miles from RPW. | | | | Project waters are Pick List aerial (straight) miles from TNW. | | | | Project waters are Pick List aerial (straight) miles from RPW. | | | | Project waters cross or serve as state boundaries. Explain: . | | | | Identify flow route to TNW ⁵ : . | | | | Tributary stream order, if known: | | | (b) | General Tributary Characteristics (check all that apply): Tributary is: Natural | ⁴ Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West. ⁵ Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW. | | ☐ Manipulated (man-altered). Explain: | |--------------------|--| | | Tributary properties with respect to top of bank (estimate): Average width: feet Average depth: feet Average side slopes: Pick List. | | | Primary tributary substrate composition (check all that apply): Silts Sands Concrete Cobbles Gravel Muck Bedrock Vegetation. Type/% cover: Other. Explain: | | | Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain: Presence of run/riffle/pool complexes. Explain: Tributary geometry: Pick List Tributary gradient (approximate
average slope): % | | (c) | Flow: Tributary provides for: Pick List Estimate average number of flow events in review area/year: Pick List Describe flow regime: Other information on duration and volume: | | | Surface flow is: Pick List. Characteristics: | | | Subsurface flow: Pick List. Explain findings: Dye (or other) test performed: | | | Tributary has (check all that apply): Bed and banks OHWM ⁶ (check all indicators that apply): clear, natural line impressed on the bank changes in the character of soil destruction of terrestrial vegetation shelving vegetation matted down, bent, or absent leaf litter disturbed or washed away sediment deposition sediment deposition water staining other (list): Discontinuous OHWM. ⁷ Explain: | | | If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply): High Tide Line indicated by: | | Cha | emical Characteristics: aracterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.). Explain: ntify specific pollutants, if known: | | (iv) Biological Cl | Riparian corridor. Characteristics (type, average width): Wetland fringe. Characteristics: Habitat for: Federally Listed species. Explain findings: | | | | ⁶A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody's flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break. ⁷Ibid. | | | | ☐ Fish/spawn areas. Explain findings: ☐ Other environmentally-sensitive species. Explain findings: ☐ Aquatic/wildlife diversity. Explain findings: | |----|-------|-------|---| | 2. | Cha | ıract | eristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW | | | (i) | | Sical Characteristics: General Wetland Characteristics: Properties: Wetland size: acres Wetland type. Explain: Wetland quality. Explain: Project wetlands cross or serve as state boundaries. Explain: | | | | (b) | General Flow Relationship with Non-TNW: Flow is: Pick List. Explain: | | | | | Surface flow is: Pick List Characteristics: | | | | | Subsurface flow: Pick List. Explain findings: Dye (or other) test performed: | | | | (c) | Wetland Adjacency Determination with Non-TNW: ☐ Directly abutting ☐ Not directly abutting ☐ Discrete wetland hydrologic connection. Explain: ☐ Ecological connection. Explain: ☐ Separated by berm/barrier. Explain: | | | | (d) | Proximity (Relationship) to TNW Project wetlands are Pick List river miles from TNW. Project waters are Pick List aerial (straight) miles from TNW. Flow is from: Pick List. Estimate approximate location of wetland as within the Pick List floodplain. | | | (ii) | Cha | emical Characteristics: racterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain: httify specific pollutants, if known: | | | (iii) | Biol | logical Characteristics. Wetland supports (check all that apply): Riparian buffer. Characteristics (type, average width): Vegetation type/percent cover. Explain: Habitat for: Federally Listed species. Explain findings: Fish/spawn areas. Explain findings: Other environmentally-sensitive species. Explain findings: Aquatic/wildlife diversity. Explain findings: | | 3. | Cha | All | wetland(s) being considered in the cumulative analysis: Pick List broximately () acres in total are being considered in the cumulative analysis. | Directly abuts? (Y/N) Size (in acres) Directly abuts? (Y/N) Size (in acres) Summarize overall biological, chemical and physical functions being performed: #### C. SIGNIFICANT NEXUS DETERMINATION A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus. Draw connections between the features documented and the effects on the TNW, as identified in the *Rapanos* Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example: - Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW? - Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW? - Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs? - Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW? Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below: - 1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D: - 2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: - 3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: | D. | DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALI | |----|---| | | THAT APPLY): | | | TNWs and Adjacent Wetlands. TNWs: linear feet Wetlands adjacent to TNWs: | width (ft), Or, | y and provide size estimates in review area: acres. | |----|--|-------------------|---| | 2. | RPWs that flow directly or indi | rectly into TNWs. | | Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial: The tributary is located offsite. It is a named tributary, Jones Swamp Creek, appears as a blue line tributary on topographic maps, is visible in aerial photographs and in LiDAR. The tributary flows directly to the non-tidal portion of the Ashepoo River. The Ashepoo River becomes tidal and a TNW at a point further downstream. The relevant reach of the tributary has a drainage area of approximately 648 acres, and based on a review of LiDAR and aerial photographs. The drainage area may include approximately 400 acres of wetlands. Based on this information, the offsite tributary likely has perennial flow. | | Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: | |-----|--| | | Provide estimates for jurisdictional waters in the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: . | | 3. | Non-RPWs ⁸ that flow directly or indirectly into TNWs. Waterbody that is not a TNW or an RPW, but
flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C. | | | Provide estimates for jurisdictional waters within the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: | | 4. | Wetlands directly abutting an RPW that flow directly or indirectly into TNWs. Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands. Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: Onsite Wetlands WL, WD and WB continue offsite towards the southwest and are part of the same, larger wetland system that is contiguous with Jones Swamp Creek, the perennial tributary located offsite. The larger wetland system shares a border with the tributary and has a direct hydrologic connection to the tributary. Therefore, Wetlands WL, WD and WB are considered abutting wetlands. | | | Wetlands directly abutting an RPW where tributaries typically flow "seasonally." Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: | | Tot | Provide acreage estimates for jurisdictional wetlands in the review area: WL: 5.84 acres; WD: 19.51 acres; and WB: 1.29 acres al: 26.64 acres. | | 5. | Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs. Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisidictional. Data supporting this conclusion is provided at Section III.C. | | | Provide acreage estimates for jurisdictional wetlands in the review area: acres. | | 6. | Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs. Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C. | | | Provide estimates for jurisdictional wetlands in the review area: acres. | | 7. | Impoundments of jurisdictional waters.9 As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional. Demonstrate that impoundment was created from "waters of the U.S.," or Demonstrate that water meets the criteria for one of the categories presented above (1-6), or Demonstrate that water is isolated with a nexus to commerce (see E below). | | DE | PLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, GRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY CH WATERS (CHECK ALL THAT APPLY):10 | 8See Footnote # 3 E. $^{^{9}\,\}mathrm{To}$ complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook. | | which are or could be used by interstate or foreign travelers for recreational or other purposes. from which fish or shellfish are or could be taken and sold in interstate or foreign commerce. which are or could be used for industrial purposes by industries in interstate commerce. Interstate isolated waters. Explain: Other factors. Explain: | |-----|--| | | Identify water body and summarize rationale supporting determination: | | | Provide estimates for jurisdictional waters in the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: Wetlands: acres. | | F. | NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY): If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements. Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce. Prior to the Jan 2001 Supreme Court decision in "SWANCC," the review area would have been regulated based solely on the "Migratory Bird Rule" (MBR). Waters do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction. Explain: Other: (explain, if not covered above): . | | | Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply): Non-wetland waters (i.e., rivers, streams): linear feet width (ft). Lakes/ponds: acres. Other non-wetland waters: acres. List type of aquatic resource: . Wetlands: | | | Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction (check all that apply): Non-wetland waters (i.e., rivers, streams): linear feet, width (ft). Lakes/ponds: acres. Other non-wetland waters: acres. List type of aquatic resource: . Wetlands: acres. | | SEC | CTION IV: DATA SOURCES. | | | SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below): Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: Lowrys Environmental & Ecological Services, LLC. Data sheets prepared/submitted by or on behalf of the applicant/consultant. Concurs with conclusions Office concurs with data sheets/delineation report. Office does not concur with data sheets/delineation report. Data sheets prepared by the Corps: Corps navigable waters' study: U.S. Geological Survey Hydrologic Atlas: USGS NHD data. USGS 8 and 12 digit HUC maps. U.S. Geological Survey map(s). Cite scale & quad name: USDA Natural Resources Conservation Service Soil Survey. Citation: Lynchburg loamy fine sand, Rains sandy loam National wetlands inventory map(s). Cite name: PFO. State/Local wetland inventory map(s): FEMA/FIRM maps: | | | State/Local wetland inventory map(s): | ¹⁰ Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA *Memorandum Regarding CWA Act Jurisdiction Following Rapanos*. | \boxtimes | Photographs: Aerial (Name & Date): Google, Reg Viewer. | | |-------------|--|--| | | or Other (Name & Date): | | | | Previous determination(s). File no. and date of response letter: | | | | Applicable/supporting case law: . | | | | Applicable/supporting scientific literature: . | | | \boxtimes | Other information (please specify): Reg Viewer, LiDAR. | | B. ADDITIONAL COMMENTS TO SUPPORT JD: The portion of the project area discussed on this Form 3 includes Wetlands WL. WD and WB. These wetlands were determined to be jurisdictional and subject to regulation under Section 404 of the Clean Water Act. The jurisdictional status of the remaining aquatic resources located within the project review area are discussed on the other forms.