APPROVED JURISDICTIONAL DETERMINATION FORM U.S. Army Corps of Engineers This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook. # REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): October 31, 2019 DISTRICT OFFICE, FILE NUMBER, FILE NAME: JD Form 1 of 5; SAC-2017-01188 Project Peach C. PROJECT LOCATION AND BACKGROUND INFORMATION: State: South Carolina County/parish/borough: Cherokee County City: Gaffney Center coordinates of site (lat/long in degree decimal format): Lat. 35.0997°, Long. -81.6978°. Universal Transverse Mercator: NAD 83 Name of nearest waterbody: Clary Creek Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Broad River Name of watershed or Hydrologic Unit Code (HUC): 03050105-10 Thicketty Creek and 03050105-16 Cherokee Creek-Broad River Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request. Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form. D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY): Office (Desk) Determination. Date: **28-October-2019** Field Determination. Date(s): 21-March-2019 **SECTION II: SUMMARY OF FINDINGS** A. RHA SECTION 10 DETERMINATION OF JURISDICTION. There Are no "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area. [Required] Waters subject to the ebb and flow of the tide. Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce. B. CWA SECTION 404 DETERMINATION OF JURISDICTION. There Are "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required] 1. Waters of the U.S. a. Indicate presence of waters of U.S. in review area (check all that apply): 1 TNWs, including territorial seas Wetlands adjacent to TNWs Relatively permanent waters² (RPWs) that flow directly or indirectly into TNWs Non-RPWs that flow directly or indirectly into TNWs Wetlands directly abutting RPWs that flow directly or indirectly into TNWs Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs Impoundments of jurisdictional waters Isolated (interstate or intrastate) waters, including isolated wetlands b. Identify (estimate) size of waters of the U.S. in the review area: Non-wetland waters: **STR1=1,763.9** linear feet: width (ft) and/or acres. Wetlands: WET5=0.07 acre, WET6=0.12 acre, and WET7=0.02 acres. c. Limits (boundaries) of jurisdiction based on: 1987 Delineation Manual, Established by OHWM., Pick List Elevation of established OHWM (if known): Non-regulated waters/wetlands (check if applicable):³ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional. Explain: **SECTION I: BACKGROUND INFORMATION** ¹ Boxes checked below shall be supported by completing the appropriate sections in Section III below. ² For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least "seasonally" (e.g., typically 3 months). ³ Supporting documentation is presented in Section III.F. #### A. TNWs AND WETLANDS ADJACENT TO TNWs The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below. | 1 | l ' | Г | N | ٦ | X | |---|-----|---|---|---|---| | | | | | | | Identify TNW: Summarize rationale supporting determination: #### 2. Wetland adjacent to TNW Summarize rationale supporting conclusion that wetland is "adjacent": ## B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY): This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under *Rapanos* have been met. The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are "relatively permanent waters" (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4. A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law. If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below. # 1. Characteristics of non-TNWs that flow directly or indirectly into TNW # (i) General Area Conditions: Watershed size: 100,759 acres; 03050105-10 Thicketty Creek and 105,590 acres 03050105-16 Cherokee Creek-Broad River Drainage area: 651.47 acres Average annual rainfall: **48.36** inches Average annual snowfall: **2.7** inches #### (ii) Physical Characteristics: (a) Relationship with TNW: Tributary flows directly into TNW. Tributary flows through 5 tributaries before entering TNW. Project waters are 25-30 river miles from TNW. Project waters are 1 (or less) river miles from RPW. Project waters are 20-25 aerial (straight) miles from TNW. Project waters are 1 (or less) aerial (straight) miles from RPW. Project waters cross or serve as state boundaries. Explain: Identify flow route to TNW⁵: Clary Creek which flows to Cole Creek which flows to Irene Creek which flows to Thicketty Creek which flows to the Broad River (Traditional Navigable Water). ⁴ Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West. ⁵ Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW. | | Tributary stream order, if known: | |------|---| | | General Tributary Characteristics (check all that apply): Tributary is: | | | Tributary properties with respect to top of bank (estimate): Average width: feet Average depth: feet Average side slopes: Pick List. | | | Primary tributary substrate composition (check all that apply): Silts Sands Concrete Cobbles Gravel Muck Bedrock Vegetation. Type/% cover: Other. Explain: According to the soil survey, the tributary is surrounded by Cecil and Madison & Cecil ls are deep, well drained soils that occur on sort slopes. | | | Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain: Presence of run/riffle/pool complexes. Explain: Unknown. Tributary geometry: Meandering. Tributary gradient (approximate average slope): % | | | Flow: Tributary provides for: Perennial flow Estimate average number of flow events in review area/year: 20 (or greater) Describe flow regime: The tributary has a clear OHWM and distinct channel. Other information on duration and volume: The tributary flows year round during normal conditions. | | | Surface flow is: Discrete and confined. Characteristics: Water flows within the channel during normal conditions. | | | Subsurface flow: Unknown. Explain findings: Dye (or other) test performed: | | | Tributary has (check all that apply): Bed and banks OHWM ⁶ (check all indicators that apply): clear, natural line impressed on the bank character of soil destruction of terrestrial vegetation shelving the presence of wack line sediment sorting sediment deposition destruction of terrestrial vegetation the presence of wack line sediment sorting sediment sorting scour multiple observed or predicted flow events abrupt change in plant community other (list): Discontinuous OHWM. Explain: | | | If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply): High Tide Line indicated by: | | Char |
mical Characteristics: cacterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.). Explain: The Thicketty Creek watershed occupies 100,759 acres of the Piedmont region of South Carolina. Land use/land cover includes 56% forested land, 29.7% agricultural land, 9.6% urban land, 2.2% scrub/shrub land, 1.6% forested wetland, 0.7% water, and 0.2% barren land. Aquatic life uses are fully supported in Irene Creek. | ⁶A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody's flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break. ⁷Ibid. use/land cover includes 51.2% forested land, 33.5% agricultural land, 10.5% urban land, 2.2% scrub/shrub land, 2% water, 0.5% forested wetland, and 0.1% barren land. Identify specific pollutants, if known: Possible pollutants from nearby major roads and development. (iv) Biological Characteristics. Channel supports (check all that apply): Riparian corridor. Characteristics (type, average width): Wetland fringe. Characteristics: Habitat for: Federally Listed species. Explain findings: ☐ Fish/spawn areas. Explain findings: The tributary provides breeding grounds for aquatic species. Other environmentally-sensitive species. Explain findings: Aquatic/wildlife diversity. Explain findings: The tributary provides habitat for wildlife in the area. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW **Physical Characteristics:** (a) General Wetland Characteristics: Properties: Wetland size: WET6=0.12 acres Wetland type. Explain: Forested. Wetland quality. Explain: Project wetlands cross or serve as state boundaries. Explain: (b) General Flow Relationship with Non-TNW: Flow is: Ephemeral flow. Explain: Wetland flows to tributary during wetter months and times of heavy rain. Surface flow is: Overland sheetflow Characteristics: The wetland flows to the tributary overland during wetter months and times of heavy rain. Subsurface flow: Unknown. Explain findings: Dye (or other) test performed: (c) Wetland Adjacency Determination with Non-TNW: ☐ Directly abutting Not directly abutting Discrete wetland hydrologic connection. Explain: Ecological connection. Explain: The wetland flows overland to the tributary. Separated by berm/barrier. Explain: (d) Proximity (Relationship) to TNW Project wetlands are 20-25 river miles from TNW. Project waters are **Pick List** aerial (straight) miles from TNW. Flow is from: Wetland to navigable waters. Estimate approximate location of wetland as within the **Pick List** floodplain. (ii) Chemical Characteristics: Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain: The Thicketty Creek watershed occupies 100,759 acres of the Piedmont region of South Carolina. Land use/land cover includes 56% forested land, 29.7% agricultural land, 9.6% urban land, 2.2% scrub/shrub land, 1.6% forested wetland, 0.7% water, and 0.2% barren land. Aquatic life uses are fully supported in Irene Creek. The Cherokee Creek-Broad River watershed occupies 105.590 acres of the Piedmont region of South Carolina. Land use/land cover includes 51.2% forested land, 33.5% agricultural land, 10.5% urban land, 2.2% scrub/shrub land, 2% water, 0.5% forested wetland, and 0.1% barren land. Identify specific pollutants, if known: Possible pollutants from nearby major roads and development. (iii) Biological Characteristics. Wetland supports (check all that apply): Riparian buffer. Characteristics (type, average width): Vegetation type/percent cover. Explain: Habitat for: Federally Listed species. Explain findings: ☐ Fish/spawn areas. Explain findings: The wetland provides breeding grounds for aquatic species. Other environmentally-sensitive species. Explain findings: Aquatic/wildlife diversity. Explain findings: The wetland provides habitat for wildlife in the area. The Cherokee Creek-Broad River watershed occupies 105.590 acres of the Piedmont region of South Carolina. Land #### 3. Characteristics of all wetlands adjacent to the tributary (if any) All wetland(s) being considered in the cumulative analysis: 3 Approximately (0.21) acres in total are being considered in the cumulative analysis. For each wetland, specify the following: | Directly abuts? (Y/N) | Size (in acres) | Directly abuts? (Y/N) | Size (in acres) | |----------------------------|----------------------|-----------------------|-----------------| | WET5 (Y) WET6 (N) WET7 (Y) | 0.07
0.12
0.02 | | | Summarize overall biological, chemical and physical functions being performed: All wetlands being evaluated in this significant nexus determination which are similarly situated and adjacent (both directly abutting and non-abutting) to the RPW are collectively performing biological, chemical, and physical functions that relate to the integrity of the TNW. The 3 wetlands in the review area are abutting and non-abutting. 2 are directly abutting the perennial RPW and 1 is non-abutting. The wetlands are mostly forested and the rest of the site appears to have been cleared at some time. They are performing a variety of biological functions that include providing breeding grounds for aquatic species in the area and habitat for wildlife in the area. They also provide vegetation diversity on a site that has been cleared. The wetlands are also performing chemical functions that include filtering pollutants from nearby major roads like Interstate 85 and from upland development and clearing. These wetlands are also performing physical functions that include flow maintenance like retaining runoff and storing rain water temporarily during the wetter months and in times of heavy rain. This helps to reduce downstream peak flows and helps to maintain seasonal flow volumes. #### C. SIGNIFICANT NEXUS DETERMINATION A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus. Draw connections between the features documented and the effects on the TNW, as identified in the *Rapanos* Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example: - Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW? - Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW? - Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs? - Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW? Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below: - 1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D: - 2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: - 3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: All wetlands being evaluated in this significant nexus determination which are similarly situated and adjacent (both directly abutting and non-abutting) to the RPW are collectively performing biological, chemical, and physical functions that relate to the integrity of the TNW. The 3 wetlands in the review area are abutting and non-abutting. 2 are directly abutting the perennial RPW and 1 is non-abutting. The wetlands are mostly forested and the rest of the site appears to have been cleared. They are performing a variety of biological functions that include providing breeding grounds for aquatic species in the area and habitat for wildlife in the area. They also provide vegetation diversity on a site that has been cleared at some time. The wetlands are also performing
chemical functions that include filtering pollutants from nearby major roads like Interstate 85 and from upland development and clearing. These wetlands are also performing physical functions that include flow maintenance like retaining runoff and storing rain water temporarily during the wetter months and in times of heavy rain. This helps to reduce downstream peak flows and helps to maintain seasonal flow volumes. Based on the collective functions described above and their importance to the biological, chemical, and physical integrity of the downstream TNW, it has been determined there is a significant nexus between the relevant reach of the tributary and its adjacent wetlands to the downstream TNW. Documentation for the Record only: Significant nexus findings for seasonal RPWs and/or wetlands abutting seasonal RPWs: | | · | |----|---| | | TERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL AT APPLY): | | 1. | TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area: ☐ TNWs: linear feet width (ft), Or, acres. ☐ Wetlands adjacent to TNWs: acres. | | 2. | RPWs that flow directly or indirectly into TNWs. Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial: STR1 is shown as a blue line on the topo map, as perennial on the soil map, and on the USFWS Wetland Map. The tributary has a drainage area of approximately 651.47 acres on the site. Water was observed flowing during flagging and during the Corps site visit. STR1 has a distinct channel and clear OWHM. Stream characteristics observed and available data led this office to conclude the tributary has a perennial flow regime. | | | Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: | | | Provide estimates for jurisdictional waters in the review area (check all that apply): Tributary waters: STR1=1,763.9 linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: . | | 3. | Non-RPWs ⁸ that flow directly or indirectly into TNWs. Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C. | | | Provide estimates for jurisdictional waters within the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: . | | 4. | Wetlands directly abutting an RPW that flow directly or indirectly into TNWs. Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands. Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: WET5 and WET7 are directly abutting STR1, a perennial RPW. | | | Wetlands directly abutting an RPW where tributaries typically flow "seasonally." Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: | | | Provide acreage estimates for jurisdictional wetlands in the review area: WET5=0.07 acre and WET7=0.02 acres. | | 5. | Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs. Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisidictional. Data supporting this conclusion is provided at Section III.C. | ⁸See Footnote # 3. D. | DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY SUCH WATERS (CHECK ALL THAT APPLY): 10 | | | Provide acreage estimates for jurisdictional wetlands in the review area: WET6=0.12 acres. | |---|----|------|---| | 7. Impoundments of jurisdictional waters. As a general rule, the impoundment of a jurisdictional tributury remains jurisdictional. Demonstrate that impoundment was created from "waters of the U.S.," or Demonstrate that water neets the criteria for one of the categories presented above (1-6), or Demonstrate that water is isolated with a nexus to commerce (see E below). Explain: E. ISOLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY SUCH WATERS (CHECK ALL THAT APPLY).* which are or could be used by interstate or foreign travelers for recreational or other purposes. from which fish or shellfsh are or could be taken and sold in interstate of foreign commerce. which are or could be used for industrial purposes by industries in interstate commerce. Interstate isolated waters. Explain: Other factors. Explain: Identify water body and summarize rationale supporting determination: Provide estimates for jurisdictional waters in the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-welland waters: acres. Jenuity (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) | | 6. | Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this | | As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional. Demonstrate that impoundment was created from "waters of the U.S.," or | | | Provide estimates for jurisdictional wetlands in the review area: acres. | | DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY SICH WATERS (CHECK ALL THAT APPLY): 10 | | | As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional. Demonstrate that impoundment was created from "waters of the U.S.," or Demonstrate that water meets the criteria for one of the categories presented above (1-6), or Demonstrate that water is isolated with a nexus to commerce (see E below). | | Provide estimates for jurisdictional waters in the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: Wetlands: acres. F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY): If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements. Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce. Prior to the Jan 2001 Supreme Court decision in
"SWANCC," the review area would have been regulated based solely on the "Migratory Bird Rule" (MBR). Waters do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction. Explain: Other: (explain, if not covered above): Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply): Non-wetland waters (i.e., rivers, streams): linear feet width (ft). Lakes/ponds: acres. Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction (check all that apply): Non-wetland waters (i.e., rivers, streams): linear feet, width (ft). Lakes/ponds: acres. Other non-wetland waters: acres. List type of aquatic resource: Other non-wetland waters: acres. List type of aquatic resource: | E. | SUC | GRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY CH WATERS (CHECK ALL THAT APPLY): 10 which are or could be used by interstate or foreign travelers for recreational or other purposes. from which fish or shellfish are or could be taken and sold in interstate or foreign commerce. which are or could be used for industrial purposes by industries in interstate commerce. Interstate isolated waters. Explain: | | Tributary waters: linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: Wetlands: acres. Wetlands: acres. If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements. Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce. Prior to the Jan 2001 Supreme Court decision in "SWANCC," the review area would have been regulated based solely on the "Migratory Bird Rule" (MBR). Waters do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction. Explain: Other: (explain, if not covered above): Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply): Non-wetland waters (i.e., rivers, streams): linear feet width (ft). Lakes/ponds: acres. Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction (check all that apply): Non-wetland waters (i.e., rivers, streams): linear feet, width (ft). Lakes/ponds: acres. Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction (check all that apply): Non-wetland waters (i.e., rivers, streams): linear feet, width (ft). Lakes/ponds: acres. Other non-wetland waters: acres. List type of aquatic resource: | | Idei | ntify water body and summarize rationale supporting determination: | | If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements. Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce. Prior to the Jan 2001 Supreme Court decision in "SWANCC," the review area would have been regulated based solely on the "Migratory Bird Rule" (MBR). Waters do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction. Explain: Other: (explain, if not covered above): Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply): Non-wetland waters (i.e., rivers, streams): linear feet width (ft). Lakes/ponds: acres. Other non-wetland waters: acres. List type of aquatic resource: . Wetlands: acres. Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction (check all that apply): Non-wetland waters (i.e., rivers, streams): linear feet, width (ft). Lakes/ponds: acres. Other non-wetland waters: acres. List type of aquatic resource: . | | | Tributary waters: linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: . | | factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply): Non-wetland waters (i.e., rivers, streams): linear feet width (ft). Lakes/ponds: acres. Other non-wetland waters: acres. List type of aquatic resource: Wetlands: acres. Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction (check all that apply): Non-wetland waters (i.e., rivers, streams): linear feet, width (ft). Lakes/ponds: acres. Other non-wetland waters: acres. List type of aquatic resource: . | F. | | If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements. Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce. Prior to the Jan 2001 Supreme Court decision in "SWANCC," the review area would have been regulated based solely on the "Migratory Bird Rule" (MBR). Waters do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction. Explain: | | a finding is required for jurisdiction (check all that apply): Non-wetland waters (i.e., rivers, streams): linear feet, width (ft). Lakes/ponds: acres. Other non-wetland waters: acres. List type of aquatic resource: . | | fact | ors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional gment (check all that apply): Non-wetland waters (i.e., rivers, streams): linear feet width (ft). Lakes/ponds: acres. Other non-wetland waters: acres. List type of aquatic resource: . | | | | | nding is required for jurisdiction (check all that apply): Non-wetland waters (i.e., rivers, streams): linear feet, width (ft). Lakes/ponds: acres. Other non-wetland waters: acres. List type of aquatic resource: . | # **SECTION IV: DATA SOURCES.** To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook. Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos. | A. S | SUPI | PORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked | |------|-------------|--| | | and | requested, appropriately reference sources below): | | | \boxtimes | Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: Atwell. | | | \boxtimes | Data sheets prepared/submitted by or on behalf of the applicant/consultant. | | | | Office concurs with data sheets/delineation report. This office agrees with the conclusions of the submitted data sheets and | | repo | rt. | | | | _ | Office does not concur with data sheets/delineation report. | | | | Data sheets prepared by the Corps: . | | | \boxtimes | Corps navigable waters' study: 1977 Navigability Study. | | | \boxtimes | U.S. Geological Survey Hydrologic Atlas: HA 730-G, 1990. | | | | USGS NHD data. | | | _ | ☑ USGS 8 and 12 digit HUC maps. 03050105-10 Thicketty Creek and 03050105-16 Cherokee Creek-Broad River | | | \boxtimes | U.S. Geological Survey map(s). Cite scale & quad name: 1:24,000 Gaffney Quad. | | | \boxtimes | USDA Natural Resources Conservation Service Soil Survey. Citation: SSURGO Cecil, Madison and Cecil, Gullied Land, | | | App | ling. | | | \boxtimes | National wetlands inventory map(s). Cite name: USFWS Wetland Map. | | | | State/Local wetland inventory map(s): | | | | FEMA/FIRM maps: . | | | | 100-year Floodplain Elevation is: (National Geodectic Vertical Datum of 1929) | | | \boxtimes | Photographs: Aerial (Name & Date): Google Earth image dated 4/20/2019. | | | | or Other (Name & Date): Photos 1-32 of 32 taken by Atwell dated 3/15/2017, 6/6/2017, 6/7/2017, and 6/13/2017. | | | | Previous determination(s). File no. and date of response letter: | | | | Applicable/supporting case law: . | | | | Applicable/supporting scientific literature: . | | | \boxtimes | Other information (please specify): Corps Site Visit. | B. ADDITIONAL COMMENTS TO SUPPORT JD: The aquatic resources documented on this form include 1 perennial RPW with 3 adjacent (abutting and non-abutting) wetlands. One of the wetlands is non-abutting, therefore a significant nexus determination was performed. Based on the documentation provided in Section III, C of this form, the nexus between the RPW (and its adjacent wetlands) and the downstream TNW is significant. The waters documented on this form are under jurisdiction of the Clean Water Act and considered waters of the U.S. ## APPROVED JURISDICTIONAL DETERMINATION
FORM **U.S. Army Corps of Engineers** This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook. | SEG
A. | CTION I: BACKGROUND INFORMATION REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): October 31, 2019 | |-----------|---| | B. | DISTRICT OFFICE, FILE NUMBER, FILE NAME: JD Form 2 of 5; SAC-2017-01188 Project Peach | | C. | PROJECT LOCATION AND BACKGROUND INFORMATION: State: South Carolina County/parish/borough: Cherokee County City: Gaffney Center coordinates of site (lat/long in degree decimal format): Lat. 35.0997°, Long81.6978°. Universal Transverse Mercator: NAD 83 Name of nearest waterbody: Clary Creek Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Broad River | | | Name of watershed or Hydrologic Unit Code (HUC): 03050105-10 Thicketty Creek and 03050105-16 Cherokee Creek-Broad River Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request. Check if other sites (e.g., offsite mitigation sites, disposal sites, etc) are associated with this action and are recorded on a different JD form. | | D. | REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY): ☐ Office (Desk) Determination. Date: 28-October-2019 ☐ Field Determination. Date(s): 21-March-2019 | | | CTION II: SUMMARY OF FINDINGS
RHA SECTION 10 DETERMINATION OF JURISDICTION. | | | re Are no "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the lew area. [Required] Waters subject to the ebb and flow of the tide. Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce. Explain: | | B. | CWA SECTION 404 DETERMINATION OF JURISDICTION. | | The | re Are "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required] | | | 1. Waters of the U.S. a. Indicate presence of waters of U.S. in review area (check all that apply): TNWs, including territorial seas Wetlands adjacent to TNWs Relatively permanent waters² (RPWs) that flow directly or indirectly into TNWs Non-RPWs that flow directly or indirectly into TNWs Wetlands directly abutting RPWs that flow directly or indirectly into TNWs Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs Impoundments of jurisdictional waters Isolated (interstate or intrastate) waters, including isolated wetlands | | | b. Identify (estimate) size of waters of the U.S. in the review area: Non-wetland waters: STR3=7,163.82 linear feet and STR6=1,573.7 linear feet: width (ft) and/or acres. Wetlands: WET3=0.21 acre and WET4=0.33 acres. | | | c. Limits (boundaries) of jurisdiction based on: 1987 Delineation Manual, Established by OHWM., Pick List Elevation of established OHWM (if known): | | | 2. Non-regulated waters/wetlands (check if applicable): ³ | Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional. Explain: ¹ Boxes checked below shall be supported by completing the appropriate sections in Section III below. ² For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least "seasonally" (e.g., typically 3 months). ³ Supporting documentation is presented in Section III.F. #### SECTION III: CWA ANALYSIS #### A. TNWs AND WETLANDS ADJACENT TO TNWs The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below. | 1. | TNW Identify TNW: | | |----|---|--| | | Summarize rationale supporting determination: . | | | 2. | Wetland adjacent to TNW Summarize rationale supporting conclusion that wetland is "adjacent": | | ## B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY): This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under *Rapanos* have been met. The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are "relatively permanent waters" (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4. A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law. If the waterbody⁴ is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below. # 1. Characteristics of non-TNWs that flow directly or indirectly into TNW ### (i) General Area Conditions: Watershed size: Pick List: Drainage area: **Pick List** Average annual rainfall: inches Average annual snowfall: inches (ii) Physical Characteristics: (a) Relationship with TNW: ☐ Tributary flows directly into TNW. Tributary flows through **Pick List** tributaries before entering TNW. Project waters are **Pick List** river miles from TNW. Project waters are **Pick List** river miles from RPW. Project waters are **Pick List** aerial (straight) miles from TNW. Project waters are **Pick List** aerial (straight) miles from RPW. Project waters cross or serve as state boundaries. Explain: Identify flow route to TNW⁵: Tributary stream order, if known: ⁴ Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West. ⁵ Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW. | | (b) | General Tributary Characteristics (check all that apply): Tributary is: Natural Artificial (man-made). Explain: Manipulated (man-altered). Explain: | |-------|-----|---| | | | Tributary properties with respect to top of bank (estimate): Average width: feet Average depth: feet Average side slopes: Pick List. | | | | Primary tributary substrate composition (check all that apply): Silts Sands Concrete Cobbles Gravel Muck Bedrock Vegetation. Type/% cover: Other. Explain: | | | | Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain: Presence of run/riffle/pool complexes. Explain: Tributary geometry: Pick List. Tributary gradient (approximate average slope): % | | | (c) | Flow: Tributary provides for: Pick List Estimate average number of flow events in review area/year: Pick List Describe flow regime: Other information on duration and volume: | | | | Surface flow is: Pick List. Characteristics: . | | | | Subsurface flow: Pick List. Explain findings: Dye (or other) test performed: | | | | Tributary has (check all that apply): Bed and banks OHWM ⁶ (check all indicators that apply): clear, natural line impressed on the bank changes in the character of soil destruction of terrestrial vegetation the presence of wrack line
sediment sorting leaf litter disturbed or washed away sediment deposition destruction of terrestrial vegetation the presence of wrack line sediment sorting sediment sorting sediment deposition multiple observed or predicted flow events abrupt change in plant community other (list): Discontinuous OHWM. ⁷ Explain: | | | | If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply): High Tide Line indicated by: | | (iii) | Cha | mical Characteristics: racterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.) Explain: tify specific pollutants, if known: | ⁶A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody's flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break. ⁷Ibid. | | (iv) | Biological Characteristics. Channel supports (check all that apply): Riparian corridor. Characteristics (type, average width): Wetland fringe. Characteristics: Habitat for: Federally Listed species. Explain findings: Fish/spawn areas. Explain findings: Other environmentally-sensitive species. Explain findings: Aquatic/wildlife diversity. Explain findings: | |----|-------|---| | 2. | Cha | racteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW | | | (i) | Physical Characteristics: (a) General Wetland Characteristics: Properties: Wetland size: acres Wetland type. Explain: Wetland quality. Explain: Project wetlands cross or serve as state boundaries. Explain: | | | | (b) General Flow Relationship with Non-TNW: Flow is: Pick List. Explain: | | | | Surface flow is: Pick List Characteristics: | | | | Subsurface flow: Pick List. Explain findings: Dye (or other) test performed: | | | | (c) Wetland Adjacency Determination with Non-TNW: Directly abutting Not directly abutting Discrete wetland hydrologic connection. Explain: Ecological connection. Explain: Separated by berm/barrier. Explain: | | | | (d) Proximity (Relationship) to TNW Project wetlands are Pick List river miles from TNW. Project waters are Pick List aerial (straight) miles from TNW. Flow is from: Pick List. Estimate approximate location of wetland as within the Pick List floodplain. | | | (ii) | Chemical Characteristics: Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain: Identify specific pollutants, if known: | | | (iii) | Biological Characteristics. Wetland supports (check all that apply): Riparian buffer. Characteristics (type, average width): Vegetation type/percent cover. Explain: Habitat for: Federally Listed species. Explain findings: Fish/spawn areas. Explain findings: Other environmentally-sensitive species. Explain findings: Aquatic/wildlife diversity. Explain findings: | | 3. | Cha | racteristics of all wetlands adjacent to the tributary (if any) All wetland(s) being considered in the cumulative analysis: Pick List Approximately () acres in total are being considered in the cumulative analysis. | For each wetland, specify the following: Summarize overall biological, chemical and physical functions being performed: ## C. SIGNIFICANT NEXUS DETERMINATION A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus. Draw connections between the features documented and the effects on the TNW, as identified in the *Rapanos* Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example: - Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW? - Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW? - Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs? - Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW? Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below: - 1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D: - 2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: - 3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: Documentation for the Record only: Significant nexus findings for seasonal RPWs and/or wetlands abutting seasonal RPWs: | D. | DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL | |----|---| | | THAT APPLY): | | 1. | TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area: TNWs: linear feet width (ft), Or, acres. | |----|---| | | | | | Wetlands adjacent to TNWs: acres. | | | | | 2. | RPWs that flow directly or indirectly into TNWs. | | | Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that | | | | | | tributary is perennial: STR3 and STR6 are perennial tributaries. STR3 is shown as a dashed blue line on the topo map | | | and STR6 is shown as a drainage feature on the topo map. STR6 and portions of STR3 are shown as perennial on the soil map. They are also shown on the USFWS Wetland Map. The other portion of STR3 is shown as intermittent on the soil map. Both tributaries have a clear distinct channel and clear OHWM. These tributaries were observed flowing during flagging and during the Corps site visit. Stream characteristics observed and available data led this office to conclude the tributaries have a perennial flow regime. | |----|---| | | Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: | | | Provide estimates for jurisdictional waters in the review area (check all that apply): Tributary waters: STR3=7,163.82 linear feet and STR6=1,573.7 linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: | | 3. | Non-RPWs ⁸ that flow directly or indirectly into TNWs. Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C. | | | Provide estimates for jurisdictional waters within the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: . | | 4. | Wetlands directly abutting an RPW that flow directly or indirectly
into TNWs. Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands. Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: WET3 and WET4 are directly abutting STR6. This was observed in the field. | | | Wetlands directly abutting an RPW where tributaries typically flow "seasonally." Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: | | | Provide acreage estimates for jurisdictional wetlands in the review area: WET3=0.21 acre and WET4=0.33 acres. | | 5. | Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs. Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisidictional. Data supporting this conclusion is provided at Section III.C. | | | Provide acreage estimates for jurisdictional wetlands in the review area: acres. | | 6. | Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs. Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C. | | | Provide estimates for jurisdictional wetlands in the review area: acres. | | 7. | Impoundments of jurisdictional waters. As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional. Demonstrate that impoundment was created from "waters of the U.S.," or Demonstrate that water meets the criteria for one of the categories presented above (1-6), or Demonstrate that water is isolated with a nexus to commerce (see E below). Explain: | | DE | LATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, GRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY CH WATERS (CHECK ALL THAT APPLY): 10 | E. To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook. Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos. | | | which are or could be used by interstate or foreign travelers for recreational or other purposes. from which fish or shellfish are or could be taken and sold in interstate or foreign commerce. which are or could be used for industrial purposes by industries in interstate commerce. Interstate isolated waters. Explain: Other factors. Explain: | |------|------|---| | | Ide | ntify water body and summarize rationale supporting determination: | | | | vide estimates for jurisdictional waters in the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: Wetlands: acres. | | F. | | N-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY): If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements. Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce. Prior to the Jan 2001 Supreme Court decision in "SWANCC," the review area would have been regulated based solely on the "Migratory Bird Rule" (MBR). Waters do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction. Explain: Other: (explain, if not covered above): | | | fact | wide acreage estimates for non-jurisdictional waters in the review area, where the <u>sole</u> potential basis of jurisdiction is the MBR ors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional grament (check all that apply): Non-wetland waters (i.e., rivers, streams): linear feet width (ft). Lakes/ponds: acres. Other non-wetland waters: acres. List type of aquatic resource: Wetlands: acres. | | | | wide acreage estimates for non-jurisdictional waters in the review area that do not meet the "Significant Nexus" standard, where such adding is required for jurisdiction (check all that apply): Non-wetland waters (i.e., rivers, streams): linear feet, width (ft). Lakes/ponds: acres. Other non-wetland waters: acres. List type of aquatic resource: Wetlands: acres. | | SEC | CTIC | ON IV: DATA SOURCES. | | | and | PORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked requested, appropriately reference sources below): Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: Atwell. Data sheets prepared/submitted by or on behalf of the applicant/consultant. Office concurs with data sheets/delineation report. This office agrees with the conclusions of the submitted data sheets and | | repo | | ☐ Office does not concur with data sheets/delineation report. Data sheets prepared by the Corps: Corps navigable waters' study: 1977 Navigability Study. U.S. Geological Survey Hydrologic Atlas: HA 730-G, 1990. ☐ USGS NHD data. ☑ USGS 8 and 12 digit HUC maps. 03050105-10 Thicketty Creek and 03050105-16 Cherokee Creek-Broad River U.S. Geological Survey map(s). Cite scale & quad name: 1:24,000 Gaffney Quad. USDA Natural Resources Conservation Service Soil Survey. Citation: SSURGO Cecil, Madison and Cecil, Gullied Land, | | | App | National wetlands inventory map(s). Cite name: USFWS Wetland Map. State/Local wetland inventory map(s): FEMA/FIRM maps: 100-year Floodplain Elevation is: (National Geodectic Vertical Datum of 1929) Photographs: Aerial (Name & Date): Google Earth image dated 4/20/2019. or Other (Name & Date): Photos 1-32 of 32 taken by Atwell dated 3/15/2017, 6/6/2017, 6/7/2017, and 6/13/2017. Previous determination(s). File no. and date of response letter: | | | | Applicable/supporting case law: Applicable/supporting scientific literature: Other information (please specify): Corps Site Visit. | B. ADDITIONAL COMMENTS TO SUPPORT JD: Aquatic resources documented on this form include 2 perennial RPWs and 2 abutting wetlands. Based on guidance provided, the waters documented on this form are within jurisdiction of the Clean Water Act and considered waters of the U.S. ## APPROVED JURISDICTIONAL DETERMINATION FORM **U.S. Army Corps of Engineers** This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook. ## **SECTION I: BACKGROUND INFORMATION** # REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): October 31, 2019 | B. | DISTRICT OFFICE, FILE NUMBER, FILE NAME: JD Form 3 of 5; SAC-2017-01188 Project Peach | |------|---| | C. | PROJECT LOCATION AND BACKGROUND INFORMATION: State: South Carolina | | D. | REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY): ☐ Office (Desk) Determination. Date: 28-October-2019 ☐ Field Determination. Date(s): 21-March-2019 | | | CTION II: SUMMARY OF FINDINGS | | Α. | RHA SECTION 10 DETERMINATION OF JURISDICTION. | | | re Are no "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the ew area. [Required] Waters subject to the ebb and flow of the tide. Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce. Explain: | | В. (| CWA SECTION 404 DETERMINATION OF JURISDICTION. | | The | re Are "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required] | | | 1. Waters of the U.S. a. Indicate presence of waters of U.S. in review area (check all that apply): TNWs, including territorial seas Wetlands adjacent to TNWs Relatively permanent waters² (RPWs) that flow directly or indirectly into TNWs Non-RPWs that flow directly or indirectly into TNWs Wetlands directly abutting RPWs that flow directly or indirectly into TNWs Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs Impoundments of
jurisdictional waters Isolated (interstate or intrastate) waters, including isolated wetlands | | feet | b. Identify (estimate) size of waters of the U.S. in the review area: Non-wetland waters: STR7=135.1 linear feet, STR8=1,453.9 linear feet, STR9=165.3 linear feet, and STR10=27.8 linear and POND1=3.47 acres. Wetlands: WET10=1.89 acres, WET11=0.17 acre, WET12=0.03 acre, and WET13=0.06 acres. | | *ST | 'R7 is the same tributary has STR8, but is located below an impoundment on STR8. STR7 will be included with STR8 in the write up. | c. Limits (boundaries) of jurisdiction based on: 1987 Delineation Manual, Established by OHWM., Pick List Elevation of established OHWM (if known): # Non-regulated waters/wetlands (check if applicable):³ ¹ Boxes checked below shall be supported by completing the appropriate sections in Section III below. ² For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least "seasonally" (e.g., typically 3 months). ³ Supporting documentation is presented in Section III.F. | | | Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional. Explain: | | | | |-----|---|--|--|--|--| | SEC | CTION II | I: CWA ANALYSIS | | | | | A. | TNWs . | AND WETLANDS ADJACENT TO TNWs | | | | | | Section | encies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 ction III.D.1.; otherwise, see Section III.B below. | | | | | | 1. TN | NW entify TNW: | | | | | | Su | mmarize rationale supporting determination: . | | | | | | | etland adjacent to TNW mmarize rationale supporting conclusion that wetland is "adjacent": | | | | | B. | CHAR | ACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY): | | | | | | | ction summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps ine whether or not the standards for jurisdiction established under <i>Rapanos</i> have been met. | | | | | | waters'
months
(perenr | encies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are "relatively permanent" (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round plant it is section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, Section III.D.4. | | | | | | A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law. | | | | | | | waterbe
conside
analytic
the trib
the trib | raterbody ⁴ is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the ody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must reflect the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for eal purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is utary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for utary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite site. The determination whether a significant nexus exists is determined in Section III.C below. | | | | | | 1. Ch | aracteristics of non-TNWs that flow directly or indirectly into TNW | | | | | | (i) | General Area Conditions: Watershed size: 100,759 acres; 03050105-10 Thicketty Creek and 105,590 acres 03050105-16 Cherokee Creek-Broad | | | | | | River | Drainage area: STR9=19.26 acres and STR10-5.71 acres Average annual rainfall: 48.36 inches Average annual snowfall: 2.7 inches | | | | | | (ii) | Physical Characteristics: (a) Relationship with TNW: ☐ Tributary flows directly into TNW. ☐ Tributary flows through 5 tributaries before entering TNW. | | | | | | | Project waters are 25-30 river miles from TNW. Project waters are 1 (or less) river miles from RPW. Project waters are 20-25 aerial (straight) miles from TNW. Project waters are 1 (or less) aerial (straight) miles from RPW. Project waters cross or serve as state boundaries. Explain: | | | | ⁴ Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West. | | Water). Tributary stream order, if known: | |----------------|---| | (b) | General Tributary Characteristics (check all that apply): Tributary is: ☐ Natural ☐ Artificial (man-made). Explain: ☐ Manipulated (man-altered). Explain: . | | | Tributary properties with respect to top of bank (estimate): Average width: feet Average depth: feet Average side slopes: Pick List. | | These soils ar | Primary tributary substrate composition (check all that apply): Silts Sands Concrete Cobbles Gravel Muck Bedrock Vegetation. Type/% cover: Other. Explain: According to the soil survey, these tributaries are surrounded by Madison and Cecil soils. re deep, well drained soils that occur on medium to short slopes. | | | Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain: Presence of run/riffle/pool complexes. Explain: Unknown. Tributary geometry: Meandering. Tributary gradient (approximate average slope): % | | (c) | Flow: Tributary provides for: Seasonal flow Estimate average number of flow events in review area/year: Pick List Describe flow regime: The tributaries have distinct channels and clear OHWMs. Other information on duration and volume: The tributaries flow during the wetter months and times of heavy rain. | | | Surface flow is: Discrete and confined. Characteristics: Water flows within the channels during normal conditions | | | Subsurface flow: Unknown . Explain findings: Dye (or other) test performed: | | | Tributary has (check all that apply): Bed and banks OHWM ⁶ (check all indicators that apply): clear, natural line impressed on the bank changes in the character of soil shelving vegetation matted down, bent, or absent leaf litter disturbed or washed away sediment deposition water staining other (list): Discontinuous OHWM. Explain: | | | If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply): High Tide Line indicated by: | | (iii) Che | emical Characteristics: | Identify flow route to TNW5: Unnamed tributary which flows to Clary Creek which flows to Cole Creek which flows to Irene Creek which flows to Thicketty Creek which flows to the Broad River (Traditional Navigable ⁷Ibid. ⁵ Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW. ⁶A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody's flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break. Characterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.). Explain: The Thicketty Creek watershed occupies 100,759 acres of the Piedmont region of South Carolina. Land use/land cover includes 56% forested land, 29.7% agricultural land, 9.6% urban land, 2.2% scrub/shrub land, 1.6% forested wetland, 0.7% water, and 0.2% barren land. Aquatic life
uses are fully supported in Irene Creek. The Cherokee Creek-Broad River watershed occupies 105.590 acres of the Piedmont region of South Carolina. Land use/land cover includes 51.2% forested land, 33.5% agricultural land, 10.5% urban land, 2.2% scrub/shrub land, 2% water, 0.5% forested wetland, and 0.1% barren land. Identify specific pollutants, if known: Possible pollutants from nearby major roads and developments. | | | | Riparian corridor. Characteristics (type, average width): Wetland fringe. Characteristics: Habitat for: Federally Listed species. Explain findings: Fish/spawn areas. Explain findings: The tributaries provide breeding grounds for aquatic species. Other environmentally-sensitive species. Explain findings: Aquatic/wildlife diversity. Explain findings: The tributaries provide habitat for wildlife in the area. | |----|------------|-------|---| | 2. | Cha | ıract | eristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW | | | (i) | | Asical Characteristics: General Wetland Characteristics: Properties: Wetland size: WET12=0.03 acres Wetland type. Explain: Forested. Wetland quality. Explain: Project wetlands cross or serve as state boundaries. Explain: | | | | (b) | General Flow Relationship with Non-TNW: Flow is: Ephemeral flow. Explain: WET12 flows to STR9 during wetter months and times of heavy rain. | | | | | Surface flow is: Overland sheetflow Characteristics: The wetland is directly abutting a seasonal RPW. | | | | | Subsurface flow: Unknown . Explain findings: . Dye (or other) test performed: . | | | | (c) | Wetland Adjacency Determination with Non-TNW: ☐ Directly abutting WET9 is directly abutting STR9. ☐ Not directly abutting ☐ Discrete wetland hydrologic connection. Explain: ☐ Ecological connection. Explain: ☐ Separated by berm/barrier. Explain: | | | | (d) | Proximity (Relationship) to TNW Project wetlands are 25-30 river miles from TNW. Project waters are 20-25 aerial (straight) miles from TNW. Flow is from: Wetland to navigable waters. Estimate approximate location of wetland as within the Pick List floodplain. | | | (ii) | | emical Characteristics: cracterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain: The Thicketty Creek watershed occupies 100,759 acres of the Piedmont region of South Carolina. Land use/land cover includes 56% forested land, 29.7% agricultural land, 9.6% urban land, 2.2% scrub/shrub land, 1.6% forested wetland, 0.7% water, and 0.2% barren land. Aquatic life uses are fully supported in Irene Creek. | | | | | e Cherokee Creek-Broad River watershed occupies 105.590 acres of the Piedmont region of South Carolina. Land use/land cover includes 51.2% forested land, 33.5% agricultural land, 10.5% urban land, 2.2% scrub/shrub land, 2% water, 0.5% forested wetland, and 0.1% barren land. ntify specific pollutants, if known: Possible pollutants from nearby major roads and development. | | | (iii) | Bio | logical Characteristics. Wetland supports (check all that apply): Riparian buffer. Characteristics (type, average width): Vegetation type/percent cover. Explain: Habitat for: | | Federally Listed species. Explain findings: | |--| | Fish/spawn areas. Explain findings: The wetland provides breeding grounds for aquatic species. | | Other environmentally-sensitive species. Explain findings: | | Aquatic/wildlife diversity. Explain findings: The wetland provides habitat for wildlife in the area. | | | ### 3. Characteristics of all wetlands adjacent to the tributary (if any) All wetland(s) being considered in the cumulative analysis: 1 Approximately (0.03) acres in total are being considered in the cumulative analysis. For each wetland, specify the following: Summarize overall biological, chemical and physical functions being performed: The wetland being evaluated in this significant nexus determination adjacent to the RPW is performing biological, chemical, and physical functions that relate to the integrity of the TNW. The wetland in the review area is abutting a seasonal RPW. The wetland is mostly forested and the rest of the site appears to have been cleared at some time. It is performing a variety of biological functions that include providing breeding grounds for aquatic species in the area and habitat for wildlife in the area. It also provides vegetation diversity on a site that has been cleared. The wetland is also performing chemical functions that include filtering pollutants from nearby major roads like Interstate 85 and from upland development and clearing. The wetland is also performing physical functions that include flow maintenance like retaining runoff and storing rain water temporarily during the wetter months and in times of heavy rain. This helps to reduce downstream peak flows and helps to maintain seasonal flow volumes. #### C. SIGNIFICANT NEXUS DETERMINATION A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus. Draw connections between the features documented and the effects on the TNW, as identified in the *Rapanos* Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example: - Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW? - Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW? - Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs? - Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW? Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below: - 1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D: - 2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: 3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: Documentation for the Record only: Significant nexus findings for seasonal RPWs and/or wetlands abutting seasonal RPWs: STR9 and STR10 are seasonal tributaries on the site are performing a variety of functions that relate to the biological, chemical, and physical functions of the downstream TNW. STR has an abutting wetland (WET12). These seasonal RPWs and wetland are performing a variety of biological functions that include providing breeding grounds for aquatic species in the area and habitat for wildlife in the area. They also provide vegetation diversity on a site that has been cleared at some time. These seasonal RPWs and the wetland are also performing chemical functions that include filtering pollutants from nearby major roads like Interstate 85 and from upland development and clearing. These seasonal RPWs and the wetland are also performing physical functions that include flow maintenance like retaining runoff and storing rain water temporarily during the wetter months and in times of heavy rain. This helps to reduce downstream peak flows and helps to maintain seasonal flow volumes. Based on the collective functions described above and their importance to the biological, chemical, and physical integrity of the downstream TNW, it has been determined there is a significant nexus between the relevant reach of the tributaries and adjacent wetlands to the downstream TNW. | D. | | DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE
SUBJECT WATERS/WETLANDS ARE (CHECK ALL CHAT APPLY): | | | |----|------|---|--|--| | | 1. | TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area: TNWs: linear feet width (ft), Or, acres. Wetlands adjacent to TNWs: acres. | | | | | 2. | RPWs that flow directly or indirectly into TNWs. Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial: STR8/STR7 is a perennial tributary. It is shown as a dashed blue line on the topo map, as perennial on the soils map, and on the USFWS Wetland Map. Water was observed flowing during flagging and during the Corps site visit. Thie tributary has a distinct channel and clear OHWM. It also has an impoundment constructed on it and several adjacent wetlands. Stream characteristics observed and available data led this office to conclude the tributary has a perennial flow regime. | | | | | | Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: STR9, and STR10 are seasonal tributaries These tributaries are shown as drainage features on the topo map and STR9 is shown as intermittent on the soil survey. STR9 has an approximate drainage area of 19.26 acres and STR10 has an approximate drainage area of 5.71 acres. They have a distinct channel and clear OHWM. Water was observed flowing during the Corps site visit from the heavy recent rains. Stream characteristics observed and available data led this office to conclude these tributaries have a seasonal flow regime. | | | | | feet | Provide estimates for jurisdictional waters in the review area (check all that apply): Tributary waters: STR7=135.1 linear feet, STR8=1,453.9 linear feet, STR9=165.3 linear feet, and STR10=27.8 linear width (ft). Other non-wetland waters: Identify type(s) of waters: | | | | | 3. | Non-RPWs ⁸ that flow directly or indirectly into TNWs. Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C. | | | | | | Provide estimates for jurisdictional waters within the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: . | | | | | 4. | Wetlands directly abutting an RPW that flow directly or indirectly into TNWs. Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands. Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: WET10, WET11, and WET13 are abutting STR8, a perennial RPW. | | | Wetlands directly abutting an RPW where tributaries typically flow "seasonally." Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: WET12 is abutting STR9, a seasonal RPW. ⁸See Footnote # 3. acre, and WET13=0.06 acres. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs. Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisidictional. Data supporting this conclusion is provided at Section III.C. Provide acreage estimates for jurisdictional wetlands in the review area: acres. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs. Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C. Provide estimates for jurisdictional wetlands in the review area: acres. Impoundments of jurisdictional waters.9 As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional. Demonstrate that impoundment was created from "waters of the U.S.," or Demonstrate that water meets the criteria for one of the categories presented above (1-6), or Demonstrate that water is isolated with a nexus to commerce (see E below). Explain: POND1 is 3.47 acres and is an impoundment of STR8, a perennial RPW. E. ISOLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY SUCH WATERS (CHECK ALL THAT APPLY): 10 which are or could be used by interstate or foreign travelers for recreational or other purposes. from which fish or shellfish are or could be taken and sold in interstate or foreign commerce. which are or could be used for industrial purposes by industries in interstate commerce. Interstate isolated waters. Explain: Other factors. Explain: Identify water body and summarize rationale supporting determination: Provide estimates for jurisdictional waters in the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: Wetlands: acres. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY): If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements. Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce. Prior to the Jan 2001 Supreme Court decision in "SWANCC," the review area would have been regulated based solely on the "Migratory Bird Rule" (MBR). Waters do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction. Explain: Other: (explain, if not covered above): Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply): Non-wetland waters (i.e., rivers, streams): linear feet width (ft). Lakes/ponds: acres. Other non-wetland waters: acres. List type of aquatic resource: Wetlands: acres Provide acreage estimates for jurisdictional wetlands in the review area: WET10=1.89 acres, WET11=0.17 acre, WET12=0.03 ⁹ To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook. ¹⁰ Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos. | | | Non-wetland waters (i.e., rivers, streams): linear feet, width (ft). Lakes/ponds: acres. Other non-wetland waters: acres. List type of aquatic resource: . Wetlands: acres. | |-------------|-------------|--| | | | N IV: DATA SOURCES. PORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked | | A. k | | requested, appropriately reference sources below): | | | | Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: Atwell . | | | | Data sheets prepared/submitted by or on behalf of the applicant/consultant. | | | | ☑ Office concurs with data sheets/delineation report. This office agrees with the conclusions of the submitted data sheets and | | repo | rt. | | | • | | Office does not concur with data sheets/delineation report. | | | | Data sheets prepared by the Corps: | | | | Corps navigable waters' study: 1977 Navigability Study. | | | \boxtimes | U.S. Geological Survey Hydrologic Atlas: HA 730-G, 1990. | | | | USGS NHD data. | | | _ | ☐ USGS 8 and 12 digit HUC maps. 03050105-10 Thicketty Creek and 03050105-16 Cherokee Creek-Broad River | | | \boxtimes | U.S. Geological Survey map(s). Cite scale & quad name: 1:24,000 Gaffney Quad. | | | \boxtimes | USDA Natural Resources Conservation Service Soil Survey. Citation: SSURGO Cecil, Madison and Cecil, Gullied Land, | | | | ling. | | | \square | National wetlands inventory map(s). Cite name: USFWS Wetland Map. | | | H | State/Local wetland inventory map(s): FEMA/FIRM maps: | | | | 100-year Floodplain Elevation is: (National Geodectic Vertical Datum of 1929) | | | \bowtie | Photographs: Aerial (Name & Date): Google Earth image dated 4/20/2019. | | | | or \(\times \) Other (Name & Date): Photos 1-32 of 32 taken by Atwell dated 3/15/2017, 6/6/2017, 6/7/2017, and
6/13/2017. | | | | Previous determination(s). File no. and date of response letter: | | | | Applicable/supporting case law: . | | | | Applicable/supporting scientific literature: . | | | \boxtimes | Other information (please specify): Corps Site Visit. | | | | | B. ADDITIONAL COMMENTS TO SUPPORT JD: The aquatic resources documented on this form include 1 perennial RPW with 3 abutting wetlands, 1 impoundment of the perennial RPW, 3 seasonal RPWs (STR7 is part of STR8), and a wetland abutting a seasonal RPW. RPWs and wetlands abutting RPWs are jurisdictional according to guidance provided, however, the significant nexus findings for the record are required by Rapanos Guidance. The waters documented on this form are under jurisdiction of the Clean Water Act and considered waters of the U.S. ### APPROVED JURISDICTIONAL DETERMINATION FORM U.S. Army Corps of Engineers This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook. # **SECTION I: BACKGROUND INFORMATION** REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): October 31, 2019 DISTRICT OFFICE, FILE NUMBER, FILE NAME: JD Form 4 of 5; SAC-2017-01188 Project Peach C. PROJECT LOCATION AND BACKGROUND INFORMATION: State: South Carolina County/parish/borough: Cherokee County City: Gaffney Center coordinates of site (lat/long in degree decimal format): Lat. 35.0997°, Long. -81.6978°. Universal Transverse Mercator: NAD 83 Name of nearest waterbody: Clary Creek Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Broad River Name of watershed or Hydrologic Unit Code (HUC): 03050105-10 Thicketty Creek and 03050105-16 Cherokee Creek-Broad River Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request. Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form. D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY): Office (Desk) Determination. Date: **28-October-2019** Field Determination. Date(s): 21-March-2019 **SECTION II: SUMMARY OF FINDINGS** A. RHA SECTION 10 DETERMINATION OF JURISDICTION. There Are no "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area. [Required] Waters subject to the ebb and flow of the tide. Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce. B. CWA SECTION 404 DETERMINATION OF JURISDICTION. There Are "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required] 1. Waters of the U.S. a. Indicate presence of waters of U.S. in review area (check all that apply): 1 TNWs, including territorial seas Wetlands adjacent to TNWs Relatively permanent waters² (RPWs) that flow directly or indirectly into TNWs Non-RPWs that flow directly or indirectly into TNWs Wetlands directly abutting RPWs that flow directly or indirectly into TNWs Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs Impoundments of jurisdictional waters Isolated (interstate or intrastate) waters, including isolated wetlands b. Identify (estimate) size of waters of the U.S. in the review area: Non-wetland waters: **STR15=2,103.3** linear feet: width (ft) and/or acres. Wetlands: WET16=0.13 acre, WET17=0.23 acre, and WET18=0.12 acres. c. Limits (boundaries) of jurisdiction based on: 1987 Delineation Manual, Established by OHWM., Pick List Elevation of established OHWM (if known): Non-regulated waters/wetlands (check if applicable):³ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional. Explain: ¹ Boxes checked below shall be supported by completing the appropriate sections in Section III below. ² For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least "seasonally" (e.g., typically 3 months). ³ Supporting documentation is presented in Section III.F. #### SECTION III: CWA ANALYSIS #### A. TNWs AND WETLANDS ADJACENT TO TNWs The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below. | 1. | TNW Identify TNW: | | |----|---|--| | | Summarize rationale supporting determination: . | | | 2. | Wetland adjacent to TNW Summarize rationale supporting conclusion that wetland is "adjacent": | | ## B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY): This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under *Rapanos* have been met. The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are "relatively permanent waters" (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4. A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law. If the waterbody⁴ is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below. # 1. Characteristics of non-TNWs that flow directly or indirectly into TNW (i) General Area Conditions: | () | Watershed size: Pick List; | |------|--| | | Drainage area: Pick List | | | Average annual rainfall: inches | | | Average annual snowfall: inches | | (ii) | Physical Characteristics: | | ` ' | (a) Relationship with TNW: | | | Tributary flows directly into TNW. | | | Tributary flows through Pick List tributaries before entering TNW. | | | Project waters are Pick List river miles from TNW. | | | Project waters are Pick List river miles from RPW. | | | Project waters are Pick List aerial (straight) miles from TNW. | | | Project waters are Pick List aerial (straight) miles from RPW. | | | Project waters cross or serve as state
boundaries. Explain: . | | | The Control of The The Control of Th | | | Identify flow route to TNW ⁵ : | | | Tributary stream order, if known: | ⁴ Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West. ⁵ Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW. | | (b) | General Tributary Characteristics (check all that apply): Tributary is: Natural Artificial (man-made). Explain: Manipulated (man-altered). Explain: | |-------|-----|---| | | | Tributary properties with respect to top of bank (estimate): Average width: feet Average depth: feet Average side slopes: Pick List. | | | | Primary tributary substrate composition (check all that apply): Silts Sands Concrete Cobbles Gravel Muck Bedrock Vegetation. Type/% cover: Other. Explain: | | | | Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain: Presence of run/riffle/pool complexes. Explain: Tributary geometry: Pick List. Tributary gradient (approximate average slope): % | | | (c) | Flow: Tributary provides for: Pick List Estimate average number of flow events in review area/year: Pick List Describe flow regime: Other information on duration and volume: | | | | Surface flow is: Pick List. Characteristics: . | | | | Subsurface flow: Pick List. Explain findings: Dye (or other) test performed: | | | | Tributary has (check all that apply): Bed and banks OHWM ⁶ (check all indicators that apply): clear, natural line impressed on the bank changes in the character of soil destruction of terrestrial vegetation the presence of wrack line sediment sorting leaf litter disturbed or washed away sediment deposition destruction of terrestrial vegetation the presence of wrack line sediment sorting sediment sorting sediment deposition multiple observed or predicted flow events abrupt change in plant community other (list): Discontinuous OHWM. ⁷ Explain: | | | | If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply): High Tide Line indicated by: | | (iii) | Cha | mical Characteristics: racterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.) Explain: tify specific pollutants, if known: | ⁶A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody's flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break. ⁷Ibid. | | (iv) | Biological Characteristics. Channel supports (check all that apply): Riparian corridor. Characteristics (type, average width): Wetland fringe. Characteristics: Habitat for: Federally Listed species. Explain findings: Fish/spawn areas. Explain findings: Other environmentally-sensitive species. Explain findings: Aquatic/wildlife diversity. Explain findings: | |----|-------|---| | 2. | Cha | racteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW | | | (i) | Physical Characteristics: (a) General Wetland Characteristics: Properties: Wetland size: acres Wetland type. Explain: Wetland quality. Explain: Project wetlands cross or serve as state boundaries. Explain: | | | | (b) General Flow Relationship with Non-TNW: Flow is: Pick List. Explain: | | | | Surface flow is: Pick List Characteristics: | | | | Subsurface flow: Pick List. Explain findings: Dye (or other) test performed: | | | | (c) Wetland Adjacency Determination with Non-TNW: Directly abutting Not directly abutting Discrete wetland hydrologic connection. Explain: Ecological connection. Explain: Separated by berm/barrier. Explain: | | | | (d) Proximity (Relationship) to TNW Project wetlands are Pick List river miles from TNW. Project waters are Pick List aerial (straight) miles from TNW. Flow is from: Pick List. Estimate approximate location of wetland as within the Pick List floodplain. | | | (ii) | Chemical Characteristics: Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain: Identify specific pollutants, if known: | | | (iii) | Biological Characteristics. Wetland supports (check all that apply): Riparian buffer. Characteristics (type, average width): Vegetation type/percent cover. Explain: Habitat for: Federally Listed species. Explain findings: Fish/spawn areas. Explain findings: Other environmentally-sensitive species. Explain findings: Aquatic/wildlife diversity. Explain findings: | | 3. | Cha | racteristics of all wetlands adjacent to the tributary (if any) All wetland(s) being considered in the cumulative analysis: Pick List Approximately () acres in total are being considered in the cumulative analysis. | For each wetland, specify the following: Summarize overall biological, chemical and physical functions being performed: #### C. SIGNIFICANT NEXUS DETERMINATION A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus. Draw connections between the features documented and the effects on the TNW, as identified in the *Rapanos* Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example: - Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW? - Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW? - Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs? - Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW? Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below: - 1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D: - 2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: - 3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: Documentation for the Record only: Significant nexus findings for seasonal RPWs and/or wetlands abutting seasonal RPWs: | D. | DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL | |----|---| | | THAT APPLY): | | 1. | TNWs and Adjacent Wetlands. | Check all that apply | and provide size estimates in review area: | |----|------------------------------|----------------------|--| | | TNWs: linear feet | width (ft), Or, | acres. | | | ☐ Wetlands adjacent to TNWs: | acres. | | | | | | | 2. RPWs that flow directly or indirectly into TNWs. Tributaries of TNWs where tributaries typically flow year-round are
jurisdictional. Provide data and rationale indicating that tributary is perennial: STR15 is a perennial tributary. STR15 is shown as a drainage feature on the topo map. STR15 is | | shown as perennial on the soil map. While the tributary was not observed during the Corps site visit, photos provided by the consultant show a defined channel, a clear OHWM, and flowing water. Available data led this office to conclude this tributary has a perennial flow regime. | |-------|---| | | ☐ Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: | | | Provide estimates for jurisdictional waters in the review area (check all that apply): Tributary waters: STR15=2,103.3 linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: . | | 3. | Non-RPWs ⁸ that flow directly or indirectly into TNWs. Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C. | | | Provide estimates for jurisdictional waters within the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: . | | 4. | Wetlands directly abutting an RPW that flow directly or indirectly into TNWs. ☐ Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands. ☐ Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: WET16 WET17, and WET18 are directly abutting STR15. | | | Wetlands directly abutting an RPW where tributaries typically flow "seasonally." Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: | | WE | Provide acreage estimates for jurisdictional wetlands in the review area: WET16=0.13 acre, WET17=0.23 acre, and CT18=0.12 acres. | | 5. | Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs. Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisidictional. Data supporting this conclusion is provided at Section III.C. | | | Provide acreage estimates for jurisdictional wetlands in the review area: acres. | | 6. | Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs. Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C. | | | Provide estimates for jurisdictional wetlands in the review area: acres. | | 7. | Impoundments of jurisdictional waters.9 As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional. Demonstrate that impoundment was created from "waters of the U.S.," or Demonstrate that water meets the criteria for one of the categories presented above (1-6), or Demonstrate that water is isolated with a nexus to commerce (see E below). Explain: | | DE SU | DLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, GRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY CH WATERS (CHECK ALL THAT APPLY): 10 which are or could be used by interstate or foreign travelers for recreational or other purposes. | | | | E. To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook. Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos. | | ☐ from which fish or shellfish are or could be taken and sold in interstate or foreign commerce. which are or could be used for industrial purposes by industries in interstate commerce. Interstate isolated waters. Explain: Other factors. Explain: | |------|---| | | Identify water body and summarize rationale supporting determination: | | | Provide estimates for jurisdictional waters in the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: Wetlands: acres. | | F. | NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY): If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements. Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce. Prior to the Jan 2001 Supreme Court decision in "SWANCC," the review area would have been regulated based solely on the "Migratory Bird Rule" (MBR). Waters do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction. Explain: Other: (explain, if not covered above): | | | Provide acreage estimates for non-jurisdictional waters in the review area, where the <u>sole</u> potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply): Non-wetland waters (i.e., rivers, streams): linear feet width (ft). Lakes/ponds: acres. Other non-wetland waters: acres. List type of aquatic resource: . Wetlands: acres. | | | Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction (check all that apply): Non-wetland waters (i.e., rivers, streams): linear feet, width (ft). Lakes/ponds: acres. Other non-wetland waters: acres. List type of aquatic resource: Wetlands: acres. | | SEC | CTION IV: DATA SOURCES. | | A. S | SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below): Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: Atwell. Data sheets prepared/submitted by or on behalf of the applicant/consultant. Office concurs with data sheets/delineation report. This office agrees with the conclusions of the submitted data sheets and | | repo | rt. Office does not concur with data sheets/delineation report. | | | □ Data sheets prepared by the Corps: □ Corps navigable waters' study: 1977 Navigability Study. □ U.S. Geological Survey Hydrologic Atlas: HA 730-G, 1990. □ USGS NHD data. | | | ☑ USGS 8 and 12 digit HUC maps. 03050105-10 Thicketty Creek and 03050105-16 Cherokee Creek-Broad River ☑ U.S. Geological Survey map(s). Cite scale & quad name: 1:24,000 Gaffney Quad. ☑ USDA Natural Resources Conservation Service Soil Survey. Citation: SSURGO Cecil, Madison and Cecil, Gullied Land, | | | Appling. National wetlands inventory map(s). Cite name: USFWS Wetland Map. State/Local wetland inventory map(s): FEMA/FIRM maps: 100-year Floodplain Elevation is: (National Geodectic Vertical Datum of 1929) Photographs: Aerial (Name & Date): Google Earth image dated 4/20/2019. | | | or ☑ Other (Name & Date): Photos 1-32 of 32 taken by Atwell dated 3/15/2017, 6/6/2017, 6/7/2017, and 6/13/2017. ☐ Previous determination(s). File no. and date of response letter: ☐ Applicable/supporting case law: ☐ Applicable/supporting scientific literature: ☐ Other information (please specify): Corps Site Visit. | B. ADDITIONAL COMMENTS TO SUPPORT JD: Aquatic resources documented on this form include 1 perennial RPW and 3 abutting wetlands. Based on guidance provided, the waters documented on this form are within jurisdiction of the Clean Water Act and considered waters of the U.S. ## APPROVED JURISDICTIONAL DETERMINATION FORM **U.S. Army Corps of Engineers** This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook. | Α. | REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): October 31, 2019 | |-------------
--| | В. | DISTRICT OFFICE, FILE NUMBER, FILE NAME: JD Form 5 of 5; SAC-2017-01188 Project Peach | | C. | PROJECT LOCATION AND BACKGROUND INFORMATION: State: South Carolina County/parish/borough: Cherokee County City: Gaffney Center coordinates of site (lat/long in degree decimal format): Lat. 35.0997°, Long81.6978°. Universal Transverse Mercator: NAD 83 Name of nearest waterbody: Clary Creek | | | Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Broad River Name of watershed or Hydrologic Unit Code (HUC): 03050105-10 Thicketty Creek and 03050105-16 Cherokee Creek-Broad Rive Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request. Check if other sites (e.g., offsite mitigation sites, disposal sites, etc) are associated with this action and are recorded on a different JD form. | | D. | REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY): ☐ Office (Desk) Determination. Date: 28-October-2019 ☐ Field Determination. Date(s): 21-March-2019 | | SEC | CTION II: SUMMARY OF FINDINGS | | Α. | RHA SECTION 10 DETERMINATION OF JURISDICTION. | | The
revi | we are a. [Required] Waters subject to the ebb and flow of the tide. Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce. Explain: | | B. | CWA SECTION 404 DETERMINATION OF JURISDICTION. | | The | are Are "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required] | | | 1. Waters of the U.S. a. Indicate presence of waters of U.S. in review area (check all that apply): TNWs, including territorial seas Wetlands adjacent to TNWs Relatively permanent waters² (RPWs) that flow directly or indirectly into TNWs Non-RPWs that flow directly or indirectly into TNWs Wetlands directly abutting RPWs that flow directly or indirectly into TNWs Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs Impoundments of jurisdictional waters Isolated (interstate or intrastate) waters, including isolated wetlands | | | b. Identify (estimate) size of waters of the U.S. in the review area: Non-wetland waters: STR11=1,559 linear feet and STR12=74.1 linear feet and/or acres. Wetlands: WET8=0.27 acre, WET9=0.06 acre, WET14=0.04 acre, and WET19=0.06 acres. | | | c. Limits (boundaries) of jurisdiction based on: 1987 Delineation Manual, Established by OHWM., Pick List Elevation of established OHWM (if known): | | | 2. Non-regulated waters/wetlands (check if applicable): ³ | Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional. Explain: **SECTION I: BACKGROUND INFORMATION** ¹ Boxes checked below shall be supported by completing the appropriate sections in Section III below. ² For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least "seasonally" (e.g., typically 3 months). ³ Supporting documentation is presented in Section III.F. #### A. TNWs AND WETLANDS ADJACENT TO TNWs The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below. Identify TNW: Summarize rationale supporting determination: #### 2. Wetland adjacent to TNW Summarize rationale supporting conclusion that wetland is "adjacent": ## B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY): This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under *Rapanos* have been met. The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are "relatively permanent waters" (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4. A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law. If the waterbody⁴ is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below. ### 1. Characteristics of non-TNWs that flow directly or indirectly into TNW # (i) General Area Conditions: Watershed size: 100,759 acres; 03050105-10 Thicketty Creek and 105,590 acres 03050105-16 Cherokee Creek-Broad #### River Drainage area: STR12=2.34 acres Average annual rainfall: 48.36 inches Average annual snowfall: 2.7 inches #### (ii) Physical Characteristics: (a) Relationship with TNW: Tributary flows directly into TNW. Tributary flows through 5 tributaries before entering TNW. Project waters are 25-30 river miles from TNW. Project waters are 1 (or less) river miles from RPW. Project waters are 20-25 aerial (straight) miles from TNW. Project waters are 1 (or less) aerial (straight) miles from RPW. Project waters cross or serve as state boundaries. Explain: ⁴ Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West. Tributary stream order, if known: STR12 is first. General Tributary Characteristics (check all that apply): ⊠ Natural Tributary is: Artificial (man-made). Explain: Manipulated (man-altered). Explain: Tributary properties with respect to top of bank (estimate): Average width: feet Average depth: feet Average side slopes: Pick List. Primary tributary substrate composition (check all that apply): ☐ Silts Sands Concrete ☐ Cobbles ☐ Gravel ☐ Muck Bedrock ☐ Vegetation. Type/% cover: Other. Explain: According to the soil survey, these tributaries are surrounded by Madison and Cecil soils. These soils are deep, well drained soils that occur on medium to short slopes. Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain: Presence of run/riffle/pool complexes. Explain: Unknown. Tributary geometry: Meandering. Tributary gradient (approximate average slope): (c) Flow: Tributary provides for: Seasonal flow Estimate average number of flow events in review area/year: Pick List Describe flow regime: STR12 has a distinct channel and clear OHWM. Other information on duration and volume: STR12 flows during the wetter months and times of heavy rain. Surface flow is: Discrete and confined. Characteristics: Water flows within channels during normal conditions. Subsurface flow: Unknown. Explain findings: Dye (or other) test performed: Tributary has (check all that apply): Bed and banks $\overline{\boxtimes}$ OHWM⁶ (check all indicators that apply): clear, natural line impressed on the bank the presence of litter and debris \boxtimes changes in the character of soil destruction of terrestrial vegetation ☐ shelving the presence of wrack line vegetation matted down, bent, or absent sediment sorting leaf litter disturbed or washed away scour sediment deposition multiple observed or predicted flow events water staining abrupt change in plant community other (list): Discontinuous OHWM. ⁷ Explain: If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply): Mean High Water Mark indicated by: High Tide Line indicated by: oil or scum line along shore objects survey to available datum; fine shell or debris deposits (foreshore) physical markings; physical markings/characteristics vegetation lines/changes in vegetation types. tidal gauges other (list): (iii) Chemical Characteristics: Identify flow route to TNW⁵: Unnamed tributary which flows to Clary Creek which flows to Cole Creek which flows to Irene
Creek which flows to Thicketty Creek which flows to the Broad River (Traditional Navigable Water). ⁵ Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW. ⁶A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody's flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break. Tibid. Characterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.). Explain: The Thicketty Creek watershed occupies 100,759 acres of the Piedmont region of South Carolina. Land use/land cover includes 56% forested land, 29.7% agricultural land, 9.6% urban land, 2.2% scrub/shrub land, 1.6% forested wetland, 0.7% water, and 0.2% barren land. Aquatic life uses are fully supported in Irene Creek. The Cherokee Creek-Broad River watershed occupies 105.590 acres of the Piedmont region of South Carolina. Land use/land cover includes 51.2% forested land, 33.5% agricultural land, 10.5% urban land, 2.2% scrub/shrub land, 2% water, 0.5% forested wetland, and 0.1% barren land. Identify specific pollutants, if known: Possible pollutants from nearby major roads and developments. | | (iv) | Bio | logical Characteristics. Channel supports (check all that apply): Riparian corridor. Characteristics (type, average width): Wetland fringe. Characteristics: Habitat for: Federally Listed species. Explain findings: Fish/spawn areas. Explain findings: The tributary provides breeding grounds for aquatic species. Other environmentally-sensitive species. Explain findings: Aquatic/wildlife diversity. Explain findings: The tributary provides habitat for wildlife in the area. | |----|-------|-------|---| | 2. | Cha | ıract | eristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW | | | (i) | | Sical Characteristics: General Wetland Characteristics: Properties: Wetland size: acres Wetland type. Explain: Wetland quality. Explain: Project wetlands cross or serve as state boundaries. Explain: | | | | (b) | General Flow Relationship with Non-TNW: Flow is: Pick List. Explain: Surface flow is: Pick List Characteristics: . | | | | | Subsurface flow: Pick List. Explain findings: Dye (or other) test performed: | | | | (c) | Wetland Adjacency Determination with Non-TNW: Directly abutting Not directly abutting Discrete wetland hydrologic connection. Explain: Ecological connection. Explain: Separated by berm/barrier. Explain: | | | | (d) | Proximity (Relationship) to TNW Project wetlands are Pick List river miles from TNW. Project waters are Pick List aerial (straight) miles from TNW. Flow is from: Pick List. Estimate approximate location of wetland as within the Pick List floodplain. | | | (ii) | Cha | emical Characteristics: aracterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain: artify specific pollutants, if known: | | | (iii) | Bio | logical Characteristics. Wetland supports (check all that apply): Riparian buffer. Characteristics (type, average width): Vegetation type/percent cover. Explain: Habitat for: Federally Listed species. Explain findings: Fish/spawn areas. Explain findings: Other environmentally-sensitive species. Explain findings: Aquatic/wildlife diversity. Explain findings: | All wetland(s) being considered in the cumulative analysis: Pick List Approximately () acres in total are being considered in the cumulative analysis. For each wetland, specify the following: Summarize overall biological, chemical and physical functions being performed: #### C. SIGNIFICANT NEXUS DETERMINATION A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus. Draw connections between the features documented and the effects on the TNW, as identified in the *Rapanos* Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example: - Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW? - Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW? - Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs? - Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW? Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below: - 1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D: - 2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: - 3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: Documentation for the Record only: Significant nexus findings for seasonal RPWs and/or wetlands abutting seasonal RPWs: STR12 is a seasonal tributary on the site that is performing a variety of functions that relate to the biological, chemical, and physical functions of the downstream TNW. This seasonal RPW is performing a variety of biological functions that include providing breeding grounds for aquatic species in the area and habitat for wildlife in the area. It also provides vegetation diversity on a site that has been cleared at some time. The seasonal RPW is also performing chemical functions that include filtering pollutants from nearby major roads like Interstate 85 and from upland development and clearing. The seasonal RPW is also performing physical functions that include flow maintenance like retaining runoff and storing rain water temporarily during the wetter months and in times of heavy rain. This helps to reduce downstream peak flows and helps to maintain seasonal flow volumes. Based on the collective functions described above and their importance to the biological, chemical, and physical integrity of the downstream TNW, it has been determined there is a significant nexus between the seasonal RPW to the downstream TNW. | TH | AT APPLY): | |-----|--| | 1. | TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area: TNWs: linear feet width (ft), Or, acres. Wetlands adjacent to TNWs: acres. | | 2. | RPWs that flow directly or indirectly into TNWs. Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial: STR11 is a perennial RPW. It is shown as a drainage pattern on the topo map and as intermittent on the soil survey.
STR11 has a distinct channel and clear OHWM. While the tributary was not observed during the Corps site visit, photos provided by the consultant show a defined channel, a clear OHWM, and flowing water. It has a drainage area of approximately 30 acres and several adjacent wetlands that help to influence the flow. Available data led this office to conclude the tributary has a perennial flow regime. | | | Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: STR12 is a seasonal tributary. It is shown as a drainage pattern on the topo map and has a drainage area of approximately 2.34 acres. STR12 has a distinct channel and clear OWHM. Available data led this office to conclude the tributary has a perennial flow regime. | | | Provide estimates for jurisdictional waters in the review area (check all that apply): Tributary waters: STR11=1,559 linear feet and STR12=74.1 linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: . | | 3. | Non-RPWs ⁸ that flow directly or indirectly into TNWs. Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C. | | | Provide estimates for jurisdictional waters within the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: . | | 4. | Wetlands directly abutting an RPW that flow directly or indirectly into TNWs. Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands. Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: WET8, WET9, WET14, and WET19 directly abut STR11, a perennial RPW. | | | Wetlands directly abutting an RPW where tributaries typically flow "seasonally." Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: | | and | Provide acreage estimates for jurisdictional wetlands in the review area: WET8=0.27 acre, WET9=0.06 acre, WET14=0.04 acre, WET19=0.06 acres. | | 5. | Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs. Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisidictional. Data supporting this conclusion is provided at Section III.C. | | | Provide acreage estimates for jurisdictional wetlands in the review area: acres. | | 6. | Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs. Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C. | | | Provide estimates for jurisdictional wetlands in the review area: acres. | | 7. | Impoundments of jurisdictional waters. ⁹ As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional. | D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL $^{^8} See$ Footnote # 3. 9 To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook. | | Demonstrate that impoundment was created from "waters of the U.S.," or Demonstrate that water meets the criteria for one of the categories presented above (1-6), or Demonstrate that water is isolated with a nexus to commerce (see E below). Explain: | |-----|---| | E. | ISOLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY SUCH WATERS (CHECK ALL THAT APPLY): 10 which are or could be used by interstate or foreign travelers for recreational or other purposes. from which fish or shellfish are or could be taken and sold in interstate or foreign commerce. which are or could be used for industrial purposes by industries in interstate commerce. Interstate isolated waters. Explain: Other factors. Explain: | | | Identify water body and summarize rationale supporting determination: | | | Provide estimates for jurisdictional waters in the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: Wetlands: acres. | | F. | NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY): If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements. Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce. Prior to the Jan 2001 Supreme Court decision in "SWANCC," the review area would have been regulated based solely on the "Migratory Bird Rule" (MBR). Waters do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction. Explain: Other: (explain, if not covered above): . | | | Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply): Non-wetland waters (i.e., rivers, streams): linear feet width (ft). Lakes/ponds: acres. Other non-wetland waters: acres. List type of aquatic resource: . Wetlands: acres. | | | Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction (check all that apply): Non-wetland waters (i.e., rivers, streams): linear feet, width (ft). Lakes/ponds: acres. Other non-wetland waters: acres. List type of aquatic resource: Wetlands: acres. | | SEC | CTION IV: DATA SOURCES. | | | SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below): Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: Atwell. Data sheets prepared/submitted by or on behalf of the applicant/consultant. Office concurs with data sheets/delineation report. This office agrees with the conclusions of the submitted data sheets and ort. Office does not concur with data sheets/delineation report. Data sheets prepared by the Corps: Corps navigable waters' study: 1977 Navigability Study. U.S. Geological Survey Hydrologic Atlas: HA 730-G, 1990. USGS NHD data. USGS 8 and 12 digit HUC maps. 03050105-10 Thicketty Creek and 03050105-16 Cherokee Creek-Broad River | | | | $^{^{10}}$ Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos. | \bowtie | U.S. Geological Survey map(s). Cite scale & quad name: 1:24,000 Gaffney Quad. | |-------------|---| | \boxtimes | USDA Natural Resources Conservation Service Soil Survey. Citation: SSURGO Cecil, Madison and Cecil, Gullied Land, | | App | pling. | | \boxtimes | National wetlands inventory map(s). Cite name: USFWS Wetland Map. | | | State/Local wetland inventory map(s): . | | | FEMA/FIRM maps: . | | | 100-year Floodplain Elevation is: (National Geodectic Vertical Datum of 1929) | | \boxtimes | Photographs: Aerial (Name & Date): Google Earth image dated 4/20/2019. | | | or Other (Name & Date): Photos 1-32 of 32 taken by Atwell dated 3/15/2017, 6/6/2017, 6/7/2017, and 6/13/2017 | | | Previous determination(s). File no. and date of response letter: | | | Applicable/supporting case law: | | | Applicable/supporting scientific literature: . | | \boxtimes | Other information (please specify): Corps Site Visit. | | | | B. ADDITIONAL COMMENTS TO SUPPORT JD: The aquatic resources documented on this form include 1 perennial RPW with 3 abutting wetlands and 1 seasonal RPW. According to guidance provided, RPWs are jursidictional, however, the significant nexus findings for the record are included as required by Rapanos Guidance. The waters documented on this form are are within jurisdiction of the Clean Water Act and considered waters of the U.S.