DEPARTMENT OF THE ARMY CHARLESTON DISTRICT, CORPS OF ENGINEERS 69A HAGOOD AVENUE CHARLESTON, SOUTH CAROLINA 29403-5107 ## FINDING OF NO SIGNIFICANT IMPACT ## EDISTO BEACH COASTAL STORM DAMAGE REDUCTION GENERAL INVESTIGATION STUDY **Edisto Beach, South Carolina** August 20, 2013 The National Environmental Policy Act (NEPA) requires the U.S. Army Corps of Engineers, Charleston District (The Corps) to evaluate the effect of proposed projects on both the environment and human health and welfare. This Finding of No Significant Impact (FONSI) summarizes the results of The Corps' evaluation and documents The Corps' conclusions. The Corps has prepared an Environmental Assessment (EA) the covers the proposed coastal storm damage reduction project for the Town of Edisto Beach. This EA is presented in an integrated Feasibility Study/Environmental Assessment. Compliance with NEPA is documented within this report. Edisto Island is a barrier island located at the mouth of the South Edisto River in Colleton County, South Carolina, approximately 45 miles southwest of Charleston, South Carolina and approximately 20 miles east-northeast of Beaufort, South Carolina. The incorporated Town of Edisto Beach is located on the island, as is Edisto Beach State Park. Edisto Beach encompasses approximately 6 miles of sand shoreline, all of which are included as part of the current feasibility study. The Town of Edisto Beach and Edisto Beach State Park are part of Edisto Island. They are separated from the main body of Edisto Island by Big Bay Creek, Scott Creek, and the associated salt marsh to the northwest and Jeremy Inlet to the northeast. The Town of Edisto Beach and Edisto Beach State Park are also bounded by the South Edisto River and St. Helena Sound to the southwest and the Atlantic Ocean to the southeast. The Town of Edisto Beach has indicated that the most significant problem facing the study area in the near future and over the next 50 years is the threat to buildings and infrastructure from coastal storms, particularly along the northern shoreline. The threat to structures is exacerbated by high levels of long-term beachfront erosion. The loss of the beachfront threatens not only the local economy and tourism in the small coastal community, but has National Economic Development impacts as well when resources that could be used elsewhere are devoted to storm recovery and rebuilding efforts that could have been prevented. The goal of the study is to reduce the adverse economic effects of coastal storms at Edisto Beach, SC. The Corps evaluated a wide range of alternatives for this project, including: construction of emergent breakwaters, submerged artificial reefs, new groins, groin lengthening, seawalls, revetments, beach fill, dune vegetation planting, dune sand fencing, coastal structure retreat, relocation, demolition, floodproofing structures, elevating structures, and regulatory changes. Details of these evaluations are presented in the EA, and were narrowed down to the following: Alternative 1: Mid-size dune and berm fill (comparable to 2006 fill) + 1,090 ft of groin lengthening Alternative 2: Minimum size dune and berm fill + 360 ft of groin lengthening Alternative 3: Maximum size dune and berm fill + 1,970 ft of groin lengthening Alternative 4: Mid-size dune and berm fill (economic bracketing alternative) + 1,130 ft of groin lengthening Alternative 5: Dune Sand Fencing (reaches I1-I4) + dune and berm fill in remaining reaches. Alternative 6: Non-Structural/Demolition (reaches E14, E15) Alternative 7: No Action The Corps' environmental criteria for evaluating the effects of the no action and the project alternatives are summarized in the following table. | | | · · · · · · · · · · · · · · · · · · · | Acc | count: EQ | | | | | | |--|--|---|---|---|--|--|--|--|--| | Item | Sub-Item | Alternative Beachfill With Groin Extensions Beachfill Without Groin Extensions Dune Sand Fencing + Beachfill Nonstructural (E14-E15) No Action | | | | | | | | | Marine
Environment | Benthic | Short term impacts to benthic macro-invertebrates associated with dredging activities. A small area of sand substrate will be covered by the groin extensions; however, the groins will provide hard substrate for benthic invertebrates. Risk of demersal fish entrainment | Short term impacts to benthic macro-
invertebrates associated with dredging
activities | | Status quo maintained | Status quo maintained | | | | | | Benthic
Resources -
Beach and
Surf Zone | surf zone benthic macro-
invertebrate community from direct
burial and turbidity associated with
beach placement of sediment. | turbidity associated with beach
placement of sediment. Invertebrate
recruitment will occur relatively quickly | No additional impact | Short term reduction in surf zone habitat and benthic macro-invertebrate abundance due to erosion, scarping, and scour of beach habitat towards existing infrastructure (i.e. Hwy 174) and long term impacts from the emergency stablization techniques (i.e. sand bags, revertments) to protect the road. | Long term reduction in surf zone habitat am intertidal benthic macro-invertebrate abundance due to erosion and scour of beach habitat towards existing homes, infrastructure (i.e. roads), and short term stabilization techniques (i.e. sand bags, revertments, etc.). Along the inlet reaches, the status quo would be maintained. | | | | | | Turbidity | and juvenile surf zone fishes from elevated turbidity levels associated | Short term impacts to adult, larval,
and juvenile surf zone fishes from
elevated turbidity levels associated
with beach placement of sediment and
dredging activities. | No additional impact | Short term impacts to adult,
larval and juvenile fish from
periodic emergency
stabilization techniques to
protect the road. | Status quo maintained | | | | | | EFH-HAPC | Short term impacts to the physiography of borrow areas. The location of the borrow area on an ebb tidal shoal will help to ensure relatively rapid recovery of the borrow area. | Short term impacts to the physiography of the borrow area. The location of the borrow area on an ebb tidal shoal will help to ensure relatively rapid recovery of the borrow area. | No additional impact | Status quo maintained | Status quo maintained | | | | | Terrestial
Environment | Beach and
Dune | Short term impacts to portions of
the existing dune vegetation during
construction of the new dune field.
Planting of dune vegetation will
mitigate this impact. | Short term impacts to portions of the
existing dune vegetation during
construction. Planting of dune
vegetation will mitigate this impact. | Existing dune vegetation will be able to keep pace with the dune accretion. | Long term degradation of | Long term degradation of beach habitat due to continued erosion of the berm and dune along the atlantic facing reaches. The inlet reaches will continue to accrete and build dune system similar to what is present. The | | | | | | | Long term sustainability of dune
habitat for nesting sea turtles and
other dependent mammal and
avian species | Long term sustainability of dune
habitat for nesting sea turtles and
other dependent mammal and avian
species | No additional impact | | dune system similar to what is present. Ine
dune system will be more expansive than
currently exists. Periodic inundation from
storms will allow overwash fans to support
bird habitat as well. | | | | | | | Short term impacts to ghost crabs and other invertebrates and their beach and dune habitat with long term stability of habitat. | Short term impacts to ghost crabs and other invertebrates and their beach and dune habitat with long term stability of habitat | | Short term impacts to ghost crabs and their beach and dune habitat from short term resotarion protection measures (ie, beach scraping, sand bags, dune stabilization) | Short term impacts to ghost crabs and their beach and dune habitat from short term protection measures (ie, beach scraping, sand bags, revetments, dune stabilization) | | | | | | Shorebird
Habitat | Short term impacts to shorebird foraging due to a temporary change in the species and diversity of surf zone macro-invertebrates | Short term impacts to shorebird
foraging due to a temporary change in
the species and diversity of surf zone
macro-invertebrates | | Short term reduction in surf zone habitat and benthic macro-invertebrate abundance due to erosion, scarping, and scour of beach habitat towards existing infrastructure (i.e. roads) and short term stabilization techniques (i.e. sand bags). | Long term reduction in surf zone habitat an
benthic macro-invertebrate abundance due
to erosion and scour of beach habitat
towards existing homes, infrastructure (i.e.
roads), and short term stabilization
techniques (i.e. sand bags). | | | | | | | for shorebirds as a result of the constructed dunes. | Prevention of overwash fan habitat for shorebirds as a result of the constructed dunes. | No additional impact | Short term impacts would
result in creation of overwash
fan habitat for shorebirds with
loss to development in the long
term | Short term creation of available overwash fan habitat for shorebirds with loss development in the long term. The State Park reach will migrate landward. Shorebird foraging habitat should be favorable; however, nests could be compromised by overwash risk. | | | | | Threatened
and
Endangered
Species | Sea Turtles | the beach. However, this effect will be minimal as construction will only be on one groin at a time and will proceed along the beach. Therefore, no area will be impacted for a considerable period of time. | Short term decrease in sea turtle nest success associated with changes to the physical chacracteristics of the beach | Sand fencing design would adhere to
the sea turtle requirements. No
additional impacts anticipated. | Long term decrease in sea
turtle nesting habitat and nest
success due to beach erosion,
scarping and scouring of the
dune. | Long term decrease in sea turtle nest success due to beach erosion, scarping and scouring of the dune. Eventually there may only be a revetment fronting and protecting Hwy 174. In this case, there would be no available nesting habitat for turtles along the atlantic reaches of the Town. However, the inlet reaches would see an increasing beach front as the MHW line moves seaward. The wider beach would likely serve as a site for the turtle volunteers to relocate any nests from the atlantic reaches. | | | | | | | Long term sustainability of sea
turtle nesting habitat due to
preservation of the beach berm.
The additional groin length will not
effect sea turtle nesting/hatchling
success. | the beach berm | No additional impact | | | | | | | | | Long term reduction of beach
lighting impacts to sea turtles from
constructed dune
Risk of sea turtle entrainment from
hopper dredge | Long term reduction of beach lighting
impacts to sea turtles from
constructed dune (will help block some
light from houses/street lights).
Risk of sea turtle entrainment from
hopper dredge | No additional impact | Risk of increased beach lighting impacts to sea turtles as dune erodes | Risk of increased beach lighting impacts to sea turtles as dune erodes | | | | | | North
Atlantic
Right Whale
Atlantic | Minimal threat of collision with
whales during dredging and groin
construction operations.
Minimal risk of Atlantic sturgeon | Minimal threat of collision with whales during dredging operations. Minimal risk of Atlantic sturgeon | No additional impact | Status quo maintained | Minimal impact associated with periodic
emergency nourishment which would occur
to protect beachfront homes and Hwy 174.
Minimal risk of Atlantic sturgeon entrainment | | | | | | Sturgeon | entrainment from hopper dredge. | entrainment from hopper dredge. | No additional impact | No additional impact | from dredging during likely periodic
emergency nourishment events. | | | | | | Piping Plover | No impact | | | | | | | Account: EQ Alternative | | | | | | | |--|---|---|---|---|--|---|--|--| | Item | Sub-Item | Beachfill with Groin Extensions Beachfill Without Groin Extensions Dune Sand Fencing + Beachfill Nonstructural No Action | | | | | | | | Cultural
Resources | | Slight risk of encountering resources associated with beach placement and borrow area dredging, although risk in dredging areas is minimal since they have been surveyed. Long-term protection of any future potential historic resouces that would be affected by natural processes. | Slight risk of encountering resources
associated with beach placement and
borrow area dredging, although risk in
dredging areas is minimal since they
have been surveyed. Long-term
protection of any future potential
historic resources that would be
affected by natural processes. | No additional impact or risk | Even with the removal of the at risk homes in E14 and E15,
Hwy 174 will continue to be protected. Source of borrow material will be an issue as it is uncertain where emergency material would be obtained from. | Potential resources along the Atlantic reaches would continue to be vulnerable to natural processes. Source of borrow material will be an issue as it is uncertain where emergency material would be obtained from. | | | | Water Quality | | | Short term and localized elevated
turbidity and suspended solid
concentrations offshore and in the surf
zone associated with dredging and
beach placement activities. | Fewer impacts than the beachfill only alternatives due to elimating need for heavy construction equipment along the inlet reaches. | Impacts could occur from the
removal of the homes and
infrastruture (e.g., water,
sewer, power lines).
Additionally, since emergency
actions will still occur to
protect thwy 174, short term
impacts to water quality could
occur during these actions. | Since emergency actions will still occur to protect Hwy 174, short term impacts to water quality could occur during these actions. Additionally, certain infrastructure would be at greater risk to being compromised which could affect nearshore water quality (e.g., water, sewer, power lines, etc.). | | | | Air Quality | | Temporary air pollutant increase associated with dredging and heavy equipment during initial construction and the renourishment events. | Temporary air pollutant increase
associated with dredging and heavy
equipment during initial construction
and the renourishment events. | No additional impacts | Temporary air pollutant
increase associated with
heavy equipment during
structure demolition and
removal. Temporary air
pollutant increase associated
with dredging and heavy
equipment during emergeny
protection events. | Temporary air pollutant increase associated with dredging and heavy equipment during emergeny protection events. | | | | Noise Quality | | events. These impacts will not | Temporary noise increase associated
with dredging and heavy equipment
during initial construction and the
renourishment events. These impacts
will not affect any property
dispropotionately because
construction will proceed along the
beach. | No additional impacts | Temporary noise increase associated with heavy equipment during structure demolition and removal | Temporary noise increase associated with
heavy equipment during periodic emergency
protection events. | | | | Recreational
and Aesthetic
Resources | | increase recreational area.
Lengthened groins could | Improved appearance of beach would
enhance recreational experience, and
a wider berm would increase
recreational area. | | A more natural appearance along the beach that may be valued more by some users. | Pearcaliae annaitu vinild dassassa as | | | | | Temporary inconvenience to beach users during initial construction and duture maintenance, although these future maintenance, although these would occur during low visitation months (Winter), when possible months (Winter), when possible. | vegetation and minimal aesthetic
impact to beach goers/homeowners in
the inlet reach. Sand fencing may be
considered an eyesore to some. | Recreation capacity would decrease as beach erodes.
Emergency protection measures (especially seawalls, revetments) would be a major impediment to beach access as well as an aesthetic eyesore.
Temporary inconvenience to beach users during removal and demolition of structures. | Recreation capacity would decrease as
beach erodes. Inlet reach would maintain a
high quality beach and dune system as the
MHW line moves seaward. | | | | | The proposed project was determined after a detailed alternatives analysis documented within the Feasibility Study/Environmental Assessment. The project consists of the following elements (Figures 1-3): 1) A 15-foot high (elevation), 15-foot wide dune beginning at the northern end of the project (i.e., Reach E15 – the southern end of the State Park) and extending southward along the beach for 16,530 feet. This dune would be fronted by a 7-foot high (elevation) berm. The first 7,740 feet of berm length would have a width of 75 feet. The width would then taper to a 50-foot width for the remaining length of the berm. The width of each end of the berm would taper to tie into the existing beach profile; 2) At Reach I4, the dune would transition into a 14-foot high (elevation), 15-foot wide dune that extends around the end of the island for 5,290 feet. No berm would be constructed in front of this dune because the existing beach profile provides an adequate berm; and 3) Approximately 1,130 ft of total groin lengthening across 23 of the existing groins. The renourishment interval for the proposed project has been estimated to occur every 8 years and is triggered by a mobilization threshold of 220,400 cubic yards of sand. The borrow area for the proposed project occurs on an ebbtidal shoal located approximately 1.5 miles to 2.5 miles southeast of the southern point of Edisto Beach and is approximately 649 acres in size (Figure 1). The site was determined from a larger search area and was narrowed down to include sands that most appropriately match the native beach sands on Edisto Beach. The borrow area contains approximately 7.2 million cubic yards of beach compatible sands. Details of the impacts of the proposed project can be found in the EA. Figure 1. Location of Edisto Beach and proposed borrow site Figure 2. Project footprint along inlet reaches Figure 3. Project footprint along Atlantic Ocean facing reaches The draft EA and FONSI have been distributed in August 2013 for a 30 day comment and review period. Since the Corps' findings demonstrate that the project will not significantly adversely affect environmental resources or human health, the preparation of an Environmental Impact Statement is not warranted. The full Environmental Assessment can be downloaded from the internet at http://www.sac.usace.army.mil/Missions/CivilWorks/NEPADocuments.aspx or a copy may be obtained by contacting Mark Messersmith by telephone at (843) 329-8162 or by email at mark.j.messersmith@usace.army.mil. | Date | | | | |------|--|--|--| | | | | | JOHN T. LITZ, PMP Lieutenant Colonel, EN Commander, US Army Engineer District, Charleston