SECTION I: BACKGROUND INFORMATION
A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): December 21, 2018
B. PROJECT LOCATION AND BACKGROUND INFORMATION:
 State: South Carolina County/parish/borough: Florence City:
 Center coordinates of site (lat/long in degree decimal format): Lat. 34.2810° N, Long. -79.6954° W.
 Universal Transverse Mercator:
 Name of nearest waterbody: Back Creek
 Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: The aquatic resource remains confined within the project boundary and does not flow into a TNW.
 Name of watershed or Hydrologic Unit Code (HUC): 03040201-08
 Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request.
 Check if other sites (e.g., offsite mitigation sites, disposal sites, etc…) are associated with this action and are recorded on a different JD form.
C. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY):
 Office (Desk) Determination. Date: Field Determination. Date(s): October 10, 2018

SECTION II: SUMMARY OF FINDINGS
A. RHA SECTION 10 DETERMINATION OF JURISDICTION.
 There are no “navigable waters of the U.S.” within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area. [Required]
 Waters subject to the ebb and flow of the tide.
 Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.
 Explain: .

B. CWA SECTION 404 DETERMINATION OF JURISDICTION.
 There are no “waters of the U.S.” within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required]
 1. Waters of the U.S.
 a. Indicate presence of waters of U.S. in review area (check all that apply):
 - TNWs, including territorial seas
 - Wetlands adjacent to TNWs
 - Relatively permanent waters2 (RPWs) that flow directly or indirectly into TNWs
 - Non-RPWs that flow directly or indirectly into TNWs
 - Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 - Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 - Impoundments of jurisdictional waters
 - Isolated (interstate or intrastate) waters, including isolated wetlands
 b. Identify (estimate) size of waters of the U.S. in the review area:
 Non-wetland waters: linear feet: width (ft) and/or acres.
 Wetlands: acres.
 c. Limits (boundaries) of jurisdiction based on: Pick List, Pick List, Pick List
 Elevation of established OHWM (if known): N/A.
 2. Non-regulated waters/wetlands (check if applicable):3
 - Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional.
 Explain: One isolated wetland, totaling 0.48 acre, was assessed within the review area and determined to be a non-jurisdictional wetland. The NWIs depict this isolated wetland as uplands (U42P). The soil survey maps this wetland

1 Boxes checked below shall be supported by completing the appropriate sections in Section III below.
2 For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least “seasonally” (e.g., typically 3 months).
3 Supporting documentation is presented in Section III.F.
as Lucy, a non-hydric soil. The topographic map depicts Non-jurisdictional Wetland 5 as uplands. During the site visit, this area was investigated and the wetland boundary was observed. This wetland is separated from the wetland located north by a 20’ high upland berm. No culvert or other potential connection was present between these two wetlands. Both wetlands were observed as having different vegetation and hydrology indicators and were determined to not be ecologically connected. Based on the information submitted by the agent and the information obtained during the site visit, this wetland has no connection to any other potential WOUS and is surrounded by non-hydric soils. Water present south of this isolated wetland was observed as flowing into the depressional wetland. Therefore, this wetland was determined to be isolated and non-jurisdictional.

This depressional wetland exhibited hydric soils and indicators of hydrology, which satisfies the criteria set forth in the 1987 Wetland Delineation Manual and the Atlantic and Gulf Coastal Plain Regional Supplement. This wetland is forested with hydrophytic vegetation present. All water located within or draining toward this wetland has no discernible or traceable outfall or connection to any WOUS. Additionally, this wetland was found to be completely surrounded by forested uplands, which further disrupts any possible connection to WOUS. Chemically, this wetland does not affect any WOUS in the absorption/treatment of nutrients, runoff, or pollutants. Physically, the topographic location of this wetland is such that water is retained and eventually percolates through the soil to groundwater only, at an unknown depth, providing little if any stormwater attenuation. Biologically, the wetland is not essential in providing organic carbon in the form of their collective primary productivity to downstream waters, resulting in the nourishment of the downstream food web. Because of the lack of discernible outfall, topography grades and lack of evidence of chemical, physical, or biological connection, this wetland was determined to be isolated, non-jurisdictional.

SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: .
 Summarize rationale supporting determination: .

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is “adjacent”: .

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY):

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4. A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody4 is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

4 Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West.
1. Characteristics of non-TNWs that flow directly or indirectly into TNW

(i) General Area Conditions:
- Watershed size: Pick List
- Drainage area: Pick List
- Average annual rainfall: inches
- Average annual snowfall: inches

(ii) Physical Characteristics:
(a) Relationship with TNW:
- Tributary flows directly into TNW.
- Tributary flows through Pick List tributaries before entering TNW.

Project waters are Pick List river miles from TNW.
Project waters are Pick List river miles from RPW.
Project waters are Pick List aerial (straight) miles from TNW.
Project waters are Pick List aerial (straight) miles from RPW.
Project waters cross or serve as state boundaries. Explain: N/A.

Identify flow route to TNW: .
Tributary stream order, if known: .

(b) General Tributary Characteristics (check all that apply):
- Tributary is: Natural

Tributary properties with respect to top of bank (estimate):
- Average width: feet
- Average depth: feet
- Average side slopes: Pick List.

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Cobble
- Gravel
- Muck
- Bedrock
- Vegetation. Type/cover: .
- Other. Explain: .

Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain: .
Tributary geometry: Pick List.
Tributary gradient (approximate average slope): .

(c) Flow:
- Tributary provides for: Pick List
- Estimate average number of flow events in review area/year: Pick List
- Describe flow regime: .
- Other information on duration and volume: .
- Subsurface flow: Pick List. Explain findings: .
- Dye (or other) test performed: .

Tributary has (check all that apply):
- Bed and banks
- OHWM (check all indicators that apply):
- clear, natural line impressed on the bank
- the presence of litter and debris
- changes in the character of soil
- destruction of terrestrial vegetation
- shelving
- the presence of wrack line
- vegetation matted down, bent, or absent
- sediment sorting

5 Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW.

6 A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody’s flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break.
leaf litter disturbed or washed away
sediment deposition
water staining
other (list):
Discontinuous OHWM.7 Explain: .

If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply):

High Tide Line indicated by: Mean High Water Mark indicated by:
oil or scum line along shore objects
fine shell or debris deposits (foreshore)
physical markings/characteristics
tidal gauges
other (list):

(iii) Chemical Characteristics:
Characterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.).
Explain: .
Identify specific pollutants, if known: .

(iv) Biological Characteristics. Channel supports (check all that apply):
 Riparian corridor. Characteristics (type, average width):
 Wetland fringe. Characteristics:
 Habitat for:
 Federally Listed species. Explain findings:
 Fish/spawn areas. Explain findings:
 Other environmentally-sensitive species. Explain findings:
 Aquatic/wildlife diversity. Explain findings:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:
(a) General Wetland Characteristics:
Properties:
Wetland size: acres
Wetland type. Explain: .
Project wetlands cross or serve as state boundaries. Explain: .

(b) General Flow Relationship with Non-TNW:
Flow is: Pick List Explain: .

Surface flow is: Pick List
Characteristics:

Subsurface flow: Pick List Explain findings: .
Dye (or other) test performed:

(c) Wetland Adjacency Determination with Non-TNW:
Directly abutting
Not directly abutting
 Discrete wetland hydrologic connection. Explain: .
 Ecological connection. Explain: .
 Separated by berm/barrier. Explain: .

(d) Proximity (Relationship) to TNW
Project wetlands are Pick List river miles from TNW.
Project waters are Pick List aerial (straight) miles from TNW.
Flow is from: Pick List.
Estimate approximate location of wetland as within the Pick List floodplain.

(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, discolored, oily film on surface; water quality; general watershed characteristics; etc.). Explain: .
Identify specific pollutants, if known: .

7Ibid.
(iii) Biological Characteristics. Wetland supports (check all that apply):
- [] Riparian buffer. Characteristics (type, average width): .
- [] Vegetation type/percent cover. Explain: .
- [] Habitat for:
 - [] Federally Listed species. Explain findings: .
 - [] Fish/spawn areas. Explain findings: .
 - [] Other environmentally-sensitive species. Explain findings: .
 - [] Aquatic/wildlife diversity. Explain findings: .

3. Characteristics of all wetlands adjacent to the tributary (if any)

 All wetland(s) being considered in the cumulative analysis: Pick List

 Approximately () acres in total are being considered in the cumulative analysis.

 For each wetland, specify the following:

<table>
<thead>
<tr>
<th>Directly abuts? (Y/N)</th>
<th>Size (in acres)</th>
<th>Directly abuts? (Y/N)</th>
<th>Size (in acres)</th>
</tr>
</thead>
</table>

 Summarize overall biological, chemical and physical functions being performed: .

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below:

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D: .

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: .

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: .
Documentation for the Record only: Significant nexus findings for seasonal RPWs and/or wetlands abutting seasonal RPWs:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY):

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs: linear feet width (ft), Or, acres.
 - Wetlands adjacent to TNWs: acres.

2. RPWs that flow directly or indirectly into TNWs.
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial:
 - Tributaries of TNW where tributaries have continuous flow “seasonally” (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters: linear feet width (ft).
 - Other non-wetland waters: acres.
 - Identify type(s) of waters:

3. Non-RPWs\(^8\) that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide estimates for jurisdictional waters within the review area (check all that apply):
 - Tributary waters: linear feet width (ft).
 - Other non-wetland waters: acres.
 - Identify type(s) of waters:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow “seasonally.” Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW:
 - Provide acreage estimates for jurisdictional wetlands in the review area: acres.

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetlands in the review area: acres.

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
 - Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide estimates for jurisdictional wetlands in the review area: acres.

7. Impoundments of jurisdictional waters.\(^9\)
 - As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional.
 - Demonstrate that impoundment was created from “waters of the U.S.,” or
 - Demonstrate that water meets the criteria for one of the categories presented above (1-6), or
 - Demonstrate that water is isolated with a nexus to commerce (see E below).
 - Explain:

\(^8\)See Footnote # 3.
\(^9\) To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook.
E. ISOLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY SUCH WATERS (CHECK ALL THAT APPLY):*10

☐ which are or could be used by interstate or foreign travelers for recreational or other purposes.
☐ from which fish or shellfish are or could be taken and sold in interstate or foreign commerce.
☐ which are or could be used for industrial purposes by industries in interstate commerce.
☐ Interstate isolated waters. Explain: .
☐ Other factors. Explain: .

Identify water body and summarize rationale supporting determination: .

Provide estimates for jurisdictional waters in the review area (check all that apply):
☐ Tributary waters: linear feet width (ft).
☐ Other non-wetland waters: acres.
☑ Wetlands: acres.

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY):

☐ If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements.
☐ Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce.
☒ Prior to the Jan 2001 Supreme Court decision in “SWANCC,” the review area would have been regulated based solely on the “Migratory Bird Rule” (MBR).
☐ Waters do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction. Explain: .
☐ Other: (explain, if not covered above): .

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):
☐ Non-wetland waters (i.e., rivers, streams): linear feet width (ft).
☐ Lakes/ponds: acres.
☐ Other non-wetland waters: acres. List type of aquatic resource: .
☒ Wetlands: 0.48 acres.

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):
☐ Non-wetland waters (i.e., rivers, streams): linear feet width (ft).
☐ Lakes/ponds: acres.
☐ Other non-wetland waters: acres. List type of aquatic resource: .
☐ Wetlands: acres.

SECTION IV: DATA SOURCES.

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):
☒ Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: Report and drawings by The Brigman Co., Inc.
☒ Data sheets prepared/submitted by or on behalf of the applicant/consultant.
☐ Office concurs with data sheets/delineation report.
☑ Office does not concur with data sheets/delineation report.
☐ Data sheets prepared by the Corps: .
☐ Corps navigable waters’ study: .
☐ USGS NHD data.
☐ USGS 8 and 12 digit HUC maps.
☒ U.S. Geological Survey map(s). Cite scale & quad name: Witherspoon Island; The topographic map depicts this isolated wetland as cleared uplands.
☐ USDA Natural Resources Conservation Service Soil Survey. Citation: Page 2; The soil survey maps the isolated wetland as Lucy, a non-hydric soil.
☒ National wetlands inventory map(s). Cite name: The NWIs map the isolated wetland as uplands (U42P).

* Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos.
State/Local wetland inventory map(s): .
FEMA/FIRM maps: .
100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)
Photographs: ☑ Aerial (Name & Date): SCDNR 2006, 99:11227:6; The aerials depict this wetland as forested.
 or ☐ Other (Name & Date): Site photos dated July 2018.
Previous determination(s). File no. and date of response letter: .
Applicable/supporting case law: .
Applicable/supporting scientific literature: .
Other information (please specify): .

B. ADDITIONAL COMMENTS TO SUPPORT JD: One isolated wetland, totaling 0.48 acre, was assessed within the review area and determined to be a non-jurisdictional wetland. The NWIs depict this isolated wetland as uplands (U42P). The soil survey maps this wetland as Lucy, a non-hydric soil. The topographic map depicts Non-jurisdictional Wetland 5 as uplands. During the site visit, this area was investigated and the wetland boundary was observed. This wetland is separated from the wetland located north by a 20’ high upland berm. No culvert or other potential connection was present between these two wetlands. Both wetlands were observed as having different vegetation and hydrology indicators and were determined to not be ecologically connected. Based on the information submitted by the agent and the information obtained during the site visit, this wetland has no connection to any other potential WOUS and is surrounded by non-hydric soils. Water present south of this isolated wetland was observed as flowing into the depressional wetland. Therefore, this wetland was determined to be isolated and non-jurisdictional. .
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION
A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): December 21, 2018

B. DISTRICT OFFICE, FILE NAME, AND NUMBER: CESAC-RDE; JD Form 2 of 5; SAC 2018-01269 Williston Road Tract

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
 State: South Carolina County/parish/borough: Florence City:
 Center coordinates of site (lat/long in degree decimal format): Lat. 34.2810° N, Long. -79.6954° W
 Universal Transverse Mercator:
 Name of nearest waterbody: Back Creek
 Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Great Pee Dee River
 Name of watershed or Hydrologic Unit Code (HUC): 03040201-08
 Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request.
 Check if other sites (e.g., offsite mitigation sites, disposal sites, etc…) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY):
 Office (Desk) Determination. Date:
 Field Determination. Date(s): October 10, 2018

SECTION II: SUMMARY OF FINDINGS
A. RHA SECTION 10 DETERMINATION OF JURISDICTION.
 There Are no “navigable waters of the U.S.” within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area. [Required]
 Waters subject to the ebb and flow of the tide.
 Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce. Explain:

B. CWA SECTION 404 DETERMINATION OF JURISDICTION.
 There Are “waters of the U.S.” within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required]
 1. Waters of the U.S.
 a. Indicate presence of waters of U.S. in review area (check all that apply): 1
 ☐ TNWs, including territorial seas
 ☐ Wetlands adjacent to TNWs
 ☑ Relatively permanent waters2 (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area:
 Non-wetland waters: (Jurisdictional Tributary 1) 5,013 linear feet: 20 width (ft) and/or acres.
 Wetlands: (Jurisdictional Wetland 7) 72.43 acres.

 Elevation of established OHWM (if known): N/A.

 2. Non-regulated waters/wetlands (check if applicable): 3
 ☐ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional. Explain:

1 Boxes checked below shall be supported by completing the appropriate sections in Section III below.
2 For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least “seasonally” (e.g., typically 3 months).
3 Supporting documentation is presented in Section III.F.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: Great Pee Dee River.

 Summarize rationale supporting determination: According to USACE Navigability Study Report No. 11, the Great Pee Dee River’s recommended limit of navigability is located at River Mile (RM) 188.2. The project waters enter the Great Pee Dee at approximately RM 112.

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is “adjacent”:

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY):

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4.

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody4 is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:
 Watershed size: Pick List ;
 Drainage area: Pick List
 Average annual rainfall: inches
 Average annual snowfall: inches

 (ii) Physical Characteristics:
 (a) Relationship with TNW:
 ☐ Tributary flows directly into TNW.
 ☐ Tributary flows through Pick List tributaries before entering TNW.

 Project waters are Pick List river miles from TNW.
 Project waters are Pick List river miles from RPW.
 Project waters are Pick List aerial (straight) miles from TNW.
 Project waters are Pick List aerial (straight) miles from RPW.
 Project waters cross or serve as state boundaries. Explain: N/A.

 Identify flow route to TNW5:

Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West.

^ Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW.
Tributary stream order, if known:

(b) General Tributary Characteristics (check all that apply):

- **Tributary is:**
 - Natural
 - Artificial (man-made). Explain:
 - Manipulated (man-altered). Explain:

- **Tributary properties with respect to top of bank (estimate):**
 - Average width: feet
 - Average depth: feet
 - Average side slopes: **Pick List.**

- **Primary tributary substrate composition (check all that apply):**
 - Silts
 - Sands
 - Concrete
 - Cobble
 - Gravel
 - Muck
 - Bedrock
 - Vegetation. Type/% cover:
 - Other. Explain:

- **Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain: .**
 - Presence of run/riffle/pool complexes. Explain:
 - Tributary geometry: **Pick List.** Explain:
 - Tributary gradient (approximate average slope): %

(c) Flow:

- **Tributary provides for:** **Pick List**
 - Estimate average number of flow events in review area/year: **Pick List**
 - Describe flow regime: .
 - Other information on duration and volume:

- **Surface flow is:** **Pick List.** Characteristics:
 - **Dye (or other) test performed:**

- **Subsurface flow:** **Pick List.** Explain findings:
 - **Bed and banks OHWM**: (check all indicators that apply):
 - the presence of litter and debris
 - changes in the character of soil
 - shooting
 - vegetation matted down, bent, or absent
 - leaf litter disturbed or washed away
 - sediment deposition
 - other (list):
 - Discontinuous OHWM. Explain:

- If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply):
 - **High Tide Line indicated by:**
 - Mean High Water Mark indicated by:
 - survey to available datum;
 - physical markings;
 - tidal gauges
 - other (list):

(iii) Chemical Characteristics:

Characterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.). Explain: .

Identify specific pollutants, if known: .

(iv) Biological Characteristics. Channel supports (check all that apply):

- **Riparian corridor. Characteristics (type, average width):**

6A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody’s flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break.

7Ibid.
2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:
 (a) General Wetland Characteristics:
 Properties:
 Wetland size: acres
 Wetland type. Explain:
 Wetland quality. Explain:
 Project wetlands cross or serve as state boundaries. Explain:

 (b) General Flow Relationship with Non-TNW:
 Flow is: Pick List. Explain:

 (c) Wetland Adjacency Determination with Non-TNW:
 Directly abutting
 Not directly abutting
 Dye (or other) test performed:

 (d) Proximity (Relationship) to TNW
 Project wetlands are Pick List river miles from TNW.
 Project waters are Pick List aerial (straight) miles from TNW.
 Flow is from: Pick List.
 Estimate approximate location of wetland as within the Pick List floodplain.

(ii) Chemical Characteristics:
 Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain:
 Identify specific pollutants, if known:

(iii) Biological Characteristics. Wetland supports (check all that apply):
 Riparian buffer. Characteristics (type, average width): .
 Vegetation type/percent cover. Explain:
 Habitat for:
 Federally Listed species. Explain findings:
 Fish/spawn areas. Explain findings:
 Other environmentally-sensitive species. Explain findings:
 Aquatic/wildlife diversity. Explain findings:

3. Characteristics of all wetlands adjacent to the tributary (if any)
 All wetland(s) being considered in the cumulative analysis: Pick List
 Approximately () acres in total are being considered in the cumulative analysis.

 For each wetland, specify the following:
 Directly abuts? (Y/N) Size (in acres) Directly abuts? (Y/N) Size (in acres)
C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below:

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D: .

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: .

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: .

Documentation for the Record only: Significant nexus findings for seasonal RPWs and/or wetlands abutting seasonal RPWs: .

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY):

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs: linear feet width (ft), Or, acres.
 - Wetlands adjacent to TNWs: acres.

2. RPWs that flow directly or indirectly into TNWs.
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial: The tributary located along the northern property boundary, which is labeled Jurisdictional Tributary 1 on the sketch, was determined to have perennial flow based on a review of the topographic map, aerials, soil survey, and NWIs. This tributary is depicted as a named blue line on the topographic map and as a meandering stream on the aerials. The NWIs map this tributary as a wetland (PFO1/2Fb), and the soil survey maps the tributary as Wehadkee and Johnston, a hydric soil. This tributary, named Back Swamp, continues flowing northeast into the Great Pee Dee River, a TNW.

 - Tributaries of TNW where tributaries have continuous flow “seasonally” (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: .

 Provide estimates for jurisdictional waters in the review area (check all that apply): .
3. **Non-RPWs** that flow directly or indirectly into TNWs.

- Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional waters within the review area (check all that apply):

- Tributary waters: \(5,013\) linear feet \(20\) width (ft).
- Other non-wetland waters: \(20\) acres.

Identify type(s) of waters: ___________

4. **Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.**

- Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: The wetland located along the northern property boundary was determined to directly abut Jurisdictional Tributary 1. This wetland is labeled Jurisdictional Wetland 7 on the sketch and is mapped palustrine forested wetlands (PFO1/2Fb) on the NWIs. This wetland system, along with the tributary, is mapped Wehadkee and Johnston, a hydric soil, on the soil survey. This wetland system is the southern portion of a larger wetland system, of which Jurisdictional Tributary 1 intersects.

- Wetlands directly abutting an RPW where tributaries typically flow “seasonally.” Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: ___________

Provide acreage estimates for jurisdictional wetlands in the review area: (Jurisdictional Wetland 7) 72.43 acres.

5. **Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs.**

- Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetlands in the review area: ___________

6. **Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.**

- Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetlands in the review area: ___________

7. **Impoundments of jurisdictional waters.**

As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional.

Demonstrate that impoundment was created from “waters of the U.S.” or

Demonstrate that water meets the criteria for one of the categories presented above (1-6), or

Demonstrate that water is isolated with a nexus to commerce (see E below).

Explain:

E. **ISOLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY SUCH WATERS (CHECK ALL THAT APPLY):**

- which are or could be used by interstate or foreign travelers for recreational or other purposes.

- from which fish or shellfish are or could be taken and sold in interstate or foreign commerce.

- which are or could be used for industrial purposes by industries in interstate commerce.

- Interstate isolated waters. **Explain:** ___________

- Other factors. **Explain:** ___________

Identify water body and summarize rationale supporting determination: ___________

*See Footnote # 3.

* To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook.

* Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos.
Provide estimates for jurisdictional waters in the review area (check all that apply):
- Tributary waters: linear feet width (ft).
- Other non-wetland waters: acres.
- Wetlands: acres.

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY):
- If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements.
- Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce.
- Prior to the Jan 2001 Supreme Court decision in "SWANCC," the review area would have been regulated based solely on the "Migratory Bird Rule" (MBR).
- Waters do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction. Explain:

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):
- Non-wetland waters (i.e., rivers, streams): linear feet width (ft).
- Lakes/ponds: acres.
- Other non-wetland waters: acres. List type of aquatic resource:
- Wetlands: acres.

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction (check all that apply):
- Non-wetland waters (i.e., rivers, streams): linear feet width (ft).
- Lakes/ponds: acres.
- Other non-wetland waters: acres. List type of aquatic resource:
- Wetlands: acres.

SECTION IV: DATA SOURCES.

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):
- Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: Report and drawings by The Brigman Co., Inc.
- Data sheets prepared/submitted by or on behalf of the applicant/consultant.
- Office concurs with data sheets/delineation report.
- Office does not concur with data sheets/delineation report.
- Data sheets prepared by the Corps:
- Corps navigable waters’ study: USACE Navigability Study Report No. 11.
- US. Geological Survey Hydrologic Atlas:
- USGS NHD data.
- USGS 8 and 12 digit HUC maps.
- US. Geological Survey map(s). Cite scale & quad name: Witherspoon Island; The topographic map depicts this area as wetlands directly abutting a blue line.
- USDA Natural Resources Conservation Service Soil Survey. Citation: Page 2; The soil survey maps the wetlands and tributary as Whedakke & Johnston, a hydric soil.
- National wetlands inventory map(s). Cite name: The NWIs map the wetlands and tributary as palustrine wetlands (PFO1Cb, PFO1/2Fb, PSS1/2Fd, and PFO1B).
- State/Local wetland inventory map(s):
- FEMA/FIRM maps:
- 100-year Floodplain Elevation is: (National Geodectic Vertical Datum of 1929)
- Photographs: Arial (Name & Date): SCNR 2006, 99:11227:6; The aerials depict this wetland as forested.
- Previous determination(s). File no. and date of response letter:
- Applicable/supporting case law:
- Applicable/supporting scientific literature:
- Other information (please specify):

B. ADDITIONAL COMMENTS TO SUPPORT JD: The wetland located along the northern property boundary was determined to directly abut Jurisdictional Tributary 1. This wetland is labeled Jurisdictional Wetland 7 on the sketch and is mapped palustrine forested wetlands (PFO1/2Fb) on the NWIs. This wetland system, along with the tributary, is mapped...
Wehadkee and Johnston, a hydric soil, on the soil survey. This wetland system is the southern portion of a larger wetland system, of which Jurisdictional Tributary 1 intersects. The tributary located along the northern property boundary, which is labeled Jurisdictional Tributary 1 on the sketch, was determined to have perennial flow based on a review of the topographic map, aerials, soil survey, and NWIs. This tributary is depicted as a named blue line on the topographic map and as a meandering stream on the aerials. The NWIs map this tributary as a wetland (PFO1/2Fb), and the soil survey maps the tributary as Wehadkee and Johnston, a hydric soil. This tributary, named Back Swamp, continues flowing northeast into the Great Pee Dee River, a TNW
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S. Army Corps of Engineers

This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): December 21, 2018

B. DISTRICT OFFICE, FILE NAME, AND NUMBER: CESAC-RDE; JD Form 3 of 5; SAC 2018-01269 Williston Road Tract

C. PROJECT LOCATION AND BACKGROUND INFORMATION:

- State: South Carolina
- County/parish/borough: Florence
- City:
- Center coordinates of site (lat/long in degree decimal format): Lat. 34.2810° N, Long. -79.6954° W
- Universal Transverse Mercator:
- Name of nearest waterbody: Unnamed tributary of Back Creek
- Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Great Pee Dee River
- Name of watershed or Hydrologic Unit Code (HUC): 03040201-08
- Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request.
- Check if other sites (e.g., offsite mitigation sites, disposal sites, etc…) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY):

- Office (Desk) Determination. Date:
- Field Determination. Date(s): October 10, 2018

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION.

There are no “navigable waters of the U.S.” within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area. [Required]

- Waters subject to the ebb and flow of the tide.
- Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce. Explain:

B. CWA SECTION 404 DETERMINATION OF JURISDICTION.

There are “waters of the U.S.” within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required]

1. Waters of the U.S.

 a. Indicate presence of waters of U.S. in review area (check all that apply):
 - TNWs, including territorial seas
 - Wetlands adjacent to TNWs
 - Relatively permanent waters\(^2\) (RPWs) that flow directly or indirectly into TNWs
 - Non-RPWs that flow directly or indirectly into TNWs
 - Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 - Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 - Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 - Impoundments of jurisdictional waters
 - Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area:

 - Non-wetland waters: (Jurisdictional Tributary 2) 1,035 linear feet; width (ft) and/or (Impounded WOTUS) 19.01 acres.
 - Wetlands: (Jurisdictional Wetland 1) 0.12 a. + (Jurisdictional Wetland 2) 0.19 a. + (Jurisdictional Wetland 3) 0.62 a. + (Jurisdictional Wetland 4) 0.79 a. + (Jurisdictional Wetland 6) 5.58 a. = 7.3 acres.

 c. Limits (boundaries) of jurisdiction based on: 1987 Delineation Manual, Established by OHWM., Pick List

2. Non-regulated waters/wetlands (check if applicable):

 - Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional. Explain: Several linear features were observed within the project area and determined to be non-jurisdictional. Two of these features connect Jurisdictional Wetlands 1, 2, and 3 to the downstream perennial RPW. Another non-

1 Boxes checked below shall be supported by completing the appropriate sections in Section III below.
2 For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least “seasonally” (e.g., typically 3 months).
3 Supporting documentation is presented in Section III.F.
jurisdictional ditch, located off site, provides a direct hydrological connection for Jurisdictional Wetland 4 to the downstream perennial RPW. Although these linear features are depicted on the aerials, they are not depicted on the topographic map, and during the site visit, they were viewed and determined to be man-made, non-jurisdictional ditches.

SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

Identify TNW: Great Pee Dee River.

Summarize rationale supporting determination: According to USACE Navigability Study Report No. 11, the Great Pee Dee River’s recommended limit of navigability is located at River Mile (RM) 188.2. The project waters enter the Great Pee Dee at approximately RM 112.

2. Wetland adjacent to TNW

Summarize rationale supporting conclusion that wetland is “adjacent”:

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY):

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4.

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:
 Watershed size: **214,121** acres ; HUC 03040201-08
 Drainage area: **520** acres
 Average annual rainfall: **50** inches
 Average annual snowfall: **0-1** inches

 (ii) Physical Characteristics:
 (a) Relationship with TNW:
 - ☒ Tributary flows directly into TNW.
 - ☐ Tributary flows through 1 tributaries before entering TNW.

 Project waters are **2-5** river miles from TNW.
 Project waters are **1 (or less)** river miles from RPW.

4 Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West.
Project waters are 2–5 aerial (straight) miles from TNW.
Project waters are 1 (or less) aerial (straight) miles from RPW.
Project waters cross or serve as state boundaries. Explain: N/A.

Identify flow route to TNW: Jurisdictional Tributary 2 continues northeast where it flows into Back Swamp, a perennial RPW. Back Swamp flows into the Great Pee Dee River, a TNW.

Tributary stream order, if known: Jurisdictional Tributary 2 was determined, based on the topographic map, to be a 1st order stream.

(b) General Tributary Characteristics (check all that apply):

Tributary is: □ Natural
□ Manipulated (man-altered). Explain: A portion of the onsite Jurisdictional Tributary 2 has been impounded.

Tributary properties with respect to top of bank (estimate):
Average width: 6 feet
Average depth: 4 feet
Average side slopes: Vertical (1:1 or less).

Primary tributary substrate composition (check all that apply):
□ Silts
□ Sands
□ Gravel
□ Cobble
□ Bedrock
□ Vegetation. Type/% cover:
□ Other. Explain: .

Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain: The tributary is relatively stable with no erosion or sloughing banks.
Presence of run/riffle/pool complexes. Explain: No run/riffle/pool complexes observed.
Tributary geometry: Meandering.
Tributary gradient (approximate average slope): 1-2 %

(c) Flow:
Tributary provides for: Perennial flow

Describe flow regime: Based on the site visit and a review of the topographic map and aerials, this tributary provides year-round flow. This tributary originates west of the project site and flows northeast into Back Swamp.
Other information on duration and volume: In addition to being recharged by groundwater, this tributary receives overland sheetflow from abutting wetlands and discrete and confined flow from non-jurisdictional ditches.

Surface flow is: Discrete and confined. Characteristics: Under normal conditions, the surface flow of this tributary is confined within bed and banks.

Subsurface flow: Unknown. Explain findings: .
□ Dye (or other) test performed: .

Tributary has (check all that apply):
□ Bed and banks
□ OHWM6 (check all indicators that apply):
□ clear, natural line impressed on the bank
□ changes in the character of soil
□ shelving
□ vegetation matted down, bent, or absent
□ leaf litter disturbed or washed away
□ sediment deposition
□ water staining
□ other (list):
□ the presence of litter and debris
□ destruction of terrestrial vegetation
□ the presence of wrack line
□ sediment sorting
□ scour
□ multiple observed or predicted flow events
□ abrupt change in plant community

If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply):
□ High Tide Line indicated by: .
□ Mean High Water Mark indicated by: .

5 Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW.
6 A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody’s flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break.
7 Ibid.
(iii) Chemical Characteristics:
Characterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.).

Explain: Jurisdictional Tributary 2 had clear, flowing water present. Land use in this watershed is comprised of 43% forested wetland, 26% agricultural land, 23% forested land, 4% urban land, and 3% nonforested wetland. Additional land uses include water and barren land. The SCDHEC Watershed Assessment indicates there is a low to moderate potential for growth in this watershed, which includes the Towns of Cheraw, Clio, Tatum, and Blenheim, and a portion of the Towns of Bennettsville and Society Hill.

Identify specific pollutants, if known: According to the SCDHEC Watershed Assessment, this watershed contains numerous industries and is expected to see increased commercial growth. Because a large portion of the watershed is agricultural land and silvicultural land, the potential exists for herbicides and other pollutants, as well as runoff from land disturbing activities such as plowing and harvesting, to enter the tributary. Because agricultural land use requires regular manipulation of the soils, agricultural activities can create an increase in suspended sediments in the downstream tributaries. According to the SCDHEC Watershed Assessment, the upstream monitoring station on the Great Pee Dee River (PD 028) states that aquatic life uses are fully supported; however, there are significant decreasing trends in dissolved oxygen concentration and increasing trends in five-day biochemical oxygen demand. There is a significant decreasing trend in pH. Recreational uses are partially supported due to fecal coliform bacteria excursions. Additionally, a fish consumption advisory has been issued for the Great Pee Dee River due to the presence of mercury.

(iv) Biological Characteristics. Channel supports (check all that apply):
- Riparian corridor. Characteristics (type, average width): This tributary supports a riparian zone approximately 200' wide that contributes to the health of the overall aquatic system by filtering out pollutants and preventing erosion.
- Wetland fringe. Characteristics: The unnamed tributary of Back Swamp is located within a wetland system.
- Habitat for:
 - Federally Listed species. Explain findings:
 - Fish/spawn areas. Explain findings:
 - Other environmentally-sensitive species. Explain findings:
 - Aquatic/wildlife diversity. Explain findings: This tributary and the adjacent wetlands are providing important aquatic habitat for wildlife and a travel corridor for aquatic fauna.

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:
(a) General Wetland Characteristics:
Properties:
- Wetland size: (Jurisdictional Wetland 1) 0.12 a. + (Jurisdictional Wetland 2) 0.19 a. + (Jurisdictional Wetland 3) 0.62 a. + (Jurisdictional Wetland 4) 0.79 a. + (Jurisdictional Wetland 6) 5.58 a. = 7.3 acres
- Wetland type. Explain: Palustrine.
- Wetland quality. Explain: Partially impaired due to the presence of non-jurisdictional ditches and an impoundment.

Project wetlands cross or serve as state boundaries. Explain: N/A.

(b) General Flow Relationship with Non-TNW:
Flow is: Intermittent flow. Explain: Jurisdictional wetlands on site were flowing into the perennial RPW during the site visit, which was during a rainfall event.

Surface flow is: Discrete and confined.

Characteristics: Jurisdictional Wetlands 1, 2, 3, and 4 flow into the off-site perennial RPW via non-jurisdictional ditches.

Subsurface flow: Unknown. Explain findings:
- Dye (or other) test performed:

(c) Wetland Adjacency Determination with Non-TNW:
- Directly abutting
- Not directly abutting

Discrete wetland hydrologic connection. Explain: Jurisdictional Wetlands 1, 2, 3, and 4 connect to the downstream perennial RPW via non-jurisdictional ditches. Jurisdictional Wetland 6 directly abuts the onsite impoundment, which flows into the downstream RPW via a water control structure.

Ecological connection. Explain:
Separated by berm/barrier. Explain:

(d) Proximity (Relationship) to TNW
Project wetlands are 2-5 river miles from TNW. Project waters are 2-5 aerial (straight) miles from TNW. Flow is from Wetland to navigable waters. Estimate approximate location of wetland as within the 100 - 500-year floodplain.

(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain: Water observed on the surface of the wetlands was clear with no oily film present. Land use in this watershed is comprised of 43% forested wetland, 26% agricultural land, 23% forested land, 4% urban land, and 3% nonforested wetland. Additional land uses include water and barren land. The SCDHEC Watershed Assessment indicates there is a low to moderate potential for growth in this watershed, which includes the Towns of Cheraw, Clio, Tatum, and Blenheim, and a portion of the Towns of Bennettsville and Society Hill. Identify specific pollutants, if known: According to the SCDHEC Watershed Assessment, this watershed contains numerous industries and is expected to see increased commercial growth. Because a large portion of the watershed is agricultural land and silvicultural land, the potential exists for herbicides and other pollutants, as well as runoff from land disturbing activities such as plowing and harvesting, to enter the tributary. Because agricultural land use requires regular manipulation of the soils, agricultural activities can create an increase in suspended sediments in the downstream tributaries. According to the SCDHEC Watershed Assessment, the upstream monitoring station on the Great Pee Dee River (PD 028) states that aquatic life uses are fully supported; however, there are significant decreasing trends in dissolved oxygen concentration and increasing trends in five-day biochemical oxygen demand. There is a significant decreasing trend in pH. Recreational uses are partially supported due to fecal coliform bacteria excursions. Additionally, a fish consumption advisory has been issued for the Great Pee Dee River due to the presence of mercury.

(iii) Biological Characteristics. Wetland supports (check all that apply):
- Riparian buffer. Characteristics (type, average width): .
- Vegetation type/percent cover. Explain: .
- Habitat for: ☑ Federally Listed species. Explain findings: . ☑ Fish/spawn areas. Explain findings: . ☑ Other environmentally-sensitive species. Explain findings: . ☑ Aquatic/wildlife diversity. Explain findings: These wetlands are providing important aquatic habitat and wildlife diversity in an area adjacent to industrial development and Interstate-95.

3. Characteristics of all wetlands adjacent to the tributary (if any)
All wetland(s) being considered in the cumulative analysis: 6
Approximately (50) acres in total are being considered in the cumulative analysis.

For each wetland, specify the following:

<table>
<thead>
<tr>
<th>Directly abuts? (Y/N)</th>
<th>Size (in acres)</th>
<th>Directly abuts? (Y/N)</th>
<th>Size (in acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>0.12</td>
<td>Y</td>
<td>40</td>
</tr>
<tr>
<td>N</td>
<td>0.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>0.62</td>
<td>Y</td>
<td>5.58</td>
</tr>
<tr>
<td>N</td>
<td>0.79</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Summarize overall biological, chemical and physical functions being performed: The 1st order tributary, and its adjacent wetlands, are providing important biological, chemical, and physical functions. According to the SCDHEC Watershed Assessment, this watershed is comprised of 43% forested wetland, 26% agricultural land, 23% forested land, 4% urban land, and 3% nonforested wetland. Due to the predominance of agricultural land use and silvicultural land use in the watershed, herbicides and other pesticides as well as sediment from soil manipulation activities are likely to enter the tributary and downstream TNW. This tributary, together with its adjacent wetlands, act as a catch basin to help filter out pollutants from the neighboring uplands and to hold runoff prior to it flowing downstream into the TNW. On-site Jurisdictional Wetlands 1, 2, 3, 4, and 6, in conjunction with the other off-site wetlands and the perennial RPW, which is an unnamed tributary of Back Swamp, collectively have a significant nexus to the downstream TNW named the Great Pee Dee River.

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent
wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below:

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D:

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: The 1st order tributary, which flows into Back Swamp, and the adjacent wetlands are collectively performing important biological, chemical, and physical functions within a watershed largely comprised of agricultural and silvicultural land uses. The biological functions being performed include providing breeding grounds and shelter for aquatic animals and diversifying the plant life within the watershed. As a result, these wetlands supply food sources for a variety of wetland dependent species, such as invertebrates, amphibians, reptiles, and mammals. These wetlands and tributary are essential in providing organic carbons in the form of their collective primary productivity to downstream waters, resulting in the nourishment of the downstream food web. The chemical functions being performed consist of the removal of excess pollutants, which are contributed by runoff from the surrounding uplands, from the downstream TNW. This reduces nitrogen and phosphorus loading downstream and effectively prevents oxygen depletion that can result from eutrophication. Physically, the adjacent wetlands help reduce stormwater flow, and the landscape position of these wetlands and their vegetation prevent soil from eroding and traveling downstream. Not only does this prevent the accumulation of sediment downstream, which can smother fish and other aquatic wildlife, but it also reduces the amount of pollutants downstream because these pollutants are usually transported by sediment particles. These wetlands temporarily store flood waters and reduce downstream peak flows by retaining large amounts of water within the soil and through evapo-transpiration. This helps to maintain seasonal flow volumes. Based on the collective functions described above and their importance to the biological, chemical, and physical integrity of the traditional navigable waters of the Great Pee Dee River, it has been determined that there is a significant nexus between the relevant reach of the tributary and adjacent wetlands to the downstream TNW.

Documentation for the Record only: Significant nexus findings for seasonal RPWs and/or wetlands abutting seasonal RPWs:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY):

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs: linear feet width (ft), Or, acres.
 - Wetlands adjacent to TNWs: acres.

2. RPWs that flow directly or indirectly into TNWs.
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial: The tributary located near the center of the site, which is labeled Jurisdictional Tributary 2 on the sketch, was determined to have perennial flow based on a review of the topographic map, aerials, soil survey, and NWIs and information obtained during the site visit. This tributary is depicted as a blue line on the topographic map and as a meandering stream on the aerials. The NWIs map this tributary as a wetland (PFO1B), and the soil survey maps the tributary as Wehadkee and Johnston, a hydric soil. This tributary flows northeast into Back Swamp, a perennial RPW, which flows northeast into the Great Pee Dee River, a TNW.
Tributaries of TNW where tributaries have continuous flow “seasonally” (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

Provide estimates for jurisdictional waters in the review area (check all that apply):
- Tributary waters: 1035 linear feet 6 width (ft).
- Other non-wetland waters: acres.
Identify type(s) of waters:

3. Non-RPWs\(^8\) that flow directly or indirectly into TNWs.
- Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional waters within the review area (check all that apply):
- Tributary waters: linear feet width (ft).
- Other non-wetland waters: acres.
Identify type(s) of waters:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
- Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
- Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW:

Provide acreage estimates for jurisdictional wetlands in the review area:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs.
- Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetlands in the review area: (Jurisdictional Wetland 1) 0.12 a. + (Jurisdictional Wetland 2) 0.19 a. + (Jurisdictional Wetland 3) 0.62 a. + (Jurisdictional Wetland 4) 0.79 a. + (Jurisdictional Wetland 6) 5.58 a. = 7.3 acres.

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
- Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetlands in the review area:

7. Impoundments of jurisdictional waters.\(^9\)
- As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional.
- Demonstrate that impoundment was created from “waters of the U.S.,” or
- Demonstrate that water meets the criteria for one of the categories presented above (1-6), or
- Demonstrate that water is isolated with a nexus to commerce (see E below).

Explain: Based on a review of the topographic map, the Impoundment WOTUS 1 was created out of a jurisdictional tributary that flows into Back Swamp. During the site visit, a water control structure was observed at the downstream end of this impoundment that allows flow through the berm into the downstream Jurisdictional Tributary 2.

E. ISOLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY SUCH WATERS (CHECK ALL THAT APPLY):\(^10\)
- which are or could be used by interstate or foreign travelers for recreational or other purposes.

\(^8\)See Footnote # 3.
\(^9\) To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook.
\(^10\) Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos.
from which fish or shellfish are or could be taken and sold in interstate or foreign commerce. Which are or could be used for industrial purposes by industries in interstate commerce. Interstate isolated waters. Explain: . Other factors. Explain: .

Identify water body and summarize rationale supporting determination: .

Provide estimates for jurisdictional waters in the review area (check all that apply):
- Tributary waters: linear feet width (ft).
- Other non-wetland waters: acres. Identify type(s) of waters: .
- Wetlands: acres.

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY):
- If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements.
- Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce.
- Prior to the Jan 2001 Supreme Court decision in "SWANCC," the review area would have been regulated based solely on the "Migratory Bird Rule" (MBR).
- Waters do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction. Explain: .
- Other: (explain, if not covered above): Several linear features were observed within the project area and determined to be non-jurisdictional. Two of these features connect Jurisdictional Wetlands 1, 2, and 3 to the downstream perennial RPW. Another non-jurisdictional ditch, located off site, provides a direct hydrological connection for Jurisdictional Wetland 4 to the downstream perennial RPW. Although these linear features are depicted on the aerals, they are not depicted on the topographic map, and during the site visit, they were viewed and determined to be man-made, non-jurisdictional ditches.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):
- Non-wetland waters (i.e., rivers, streams): linear feet width (ft).
- Lakes/ponds: acres.
- Other non-wetland waters: acres. List type of aquatic resource: .
- Wetlands: acres.

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):
- Non-wetland waters (i.e., rivers, streams): linear feet, width (ft).
- Lakes/ponds: acres.
- Other non-wetland waters: acres. List type of aquatic resource: .
- Wetlands: acres.

SECTION IV: DATA SOURCES.

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):
- Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: Report and drawings by The Brigman Co., Inc.
- Data sheets prepared/submitted by or on behalf of the applicant/consultant. Office concurs with data sheets/delineation report.
- Office does not concur with data sheets/delineation report.
- Data sheets prepared by the Corps: .
- Corps navigable waters’ study: USACE Navigability Study Report No. 11.
- USGS NHD data.
- USGS 8 and 12 digit HUC maps.
- U.S. Geological Survey map(s). Cite scale & quad name: Witherspoon Island; The topographic map depicts this tributary as a blue line. The wetlands are depicted as forested.
- USDA Natural Resources Conservation Service Soil Survey. Citation: Page 2; The soil survey maps the wetlands and tributary as Wehadkee & Johnston and Rains, which are hydric soils.
- National wetlands inventory map(s). Cite name: The NWIs map the Jurisdictional Tributary 2 as palustrine wetlands (PFO1B). The impoundment is mapped PUBHh. The adjacent wetlands are mapped uplands (U42P). State/Local wetland inventory map(s): .
- FEMA/FIRM maps: .
- 100-year Floodplain Elevation is: (National Geodectic Vertical Datum of 1929)
- Photographs: Aerial (Name & Date): SCDNR 2006, 99:11227:6; The aerials depict these wetlands as forested and the impoundment as an open water body. The tributary is depicted as a meandering linear feature.
B. ADDITIONAL COMMENTS TO SUPPORT JD: The tributary located near the center of the site, which is labeled Jurisdictional Tributary 2 on the sketch, was determined to have perennial flow based on a review of the topographic map, aerals, soil survey, NWIs, and information obtained during the site visit. This tributary is depicted as a blue line on the topographic map and as a meandering stream on the aerals. The NWIs map this tributary as a wetland (PFO1B), and the soil survey maps the tributary as Wehadkee and Johnston, a hydric soil. This tributary flows northeast into Back Swamp, a perennial RPW, which flows northeast into the Great Pee Dee River, a TNW. The onsite impoundment labeled "Impoundment WOTUS 1" on the sketch was determined to have been created out of a jurisdictional tributary that flows into Back Swamp based on a review of the topographic map. During the site visit, a water control structure was observed at the downstream end of the impoundment that allows flow through the berm into the downstream Jurisdictional Tributary 2. Jurisdictional Wetlands 1, 2, 3, 4, and 6 were determined to be jurisdictional in Section IIIC above.
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): December 21, 2018

B. DISTRICT OFFICE, FILE NAME, AND NUMBER: CESAC-RDE; JD Form 4 of 5; SAC 2018-01269 Williston Road Tract

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
State: South Carolina
County/parish/borough: Florence
City:
Center coordinates of site (lat/long in degree decimal format): Lat. 34.2810° N, Long. -79.6954° W
Universal Transverse Mercator:
Name of nearest waterbody: Back Creek
Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Great Pee Dee River
Name of watershed or Hydrologic Unit Code (HUC): 03040201-08

Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request.
Check if other sites (e.g., offsite mitigation sites, disposal sites, etc…) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY):
- Office (Desk) Determination. Date:
- Field Determination. Date(s): October 10, 2018

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION.

There are no “navigable waters of the U.S.” within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area. [Required]

- Waters subject to the ebb and flow of the tide.
- Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce. Explain:

B. CWA SECTION 404 DETERMINATION OF JURISDICTION.

There are “waters of the U.S.” within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required]

1. Waters of the U.S.
 a. Indicate presence of waters of U.S. in review area (check all that apply): ^
 - TNWs, including territorial seas
 - Wetlands adjacent to TNWs
 - Relatively permanent waters^2 (RPWs) that flow directly or indirectly into TNWs
 - Non-RPWs that flow directly or indirectly into TNWs
 - Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 - Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 - Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 - Impoundments of jurisdictional waters
 - Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area:
 Non-wetland waters: (Jurisdictional Tributary 3) 722 linear feet: 10 width (ft) and/or acres.
 Wetlands: acres.

 c. Limits (boundaries) of jurisdiction based on: Established by OHWM., Pick List, Pick List
 Elevation of established OHWM (if known): N/A.

2. Non-regulated waters/wetlands (check if applicable): ^
 - Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional. Explain:

^ Boxes checked below shall be supported by completing the appropriate sections in Section III below.
^ For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least “seasonally” (e.g., typically 3 months).
^ Supporting documentation is presented in Section III.F.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1.; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: Great Pee Dee River.

 Summarize rationale supporting determination: According to USACE Navigability Study Report No. 11, the Great Pee Dee River’s recommended limit of navigability is located at River Mile (RM) 188.2. The project waters enter the Great Pee Dee at approximately RM 112.

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is “adjacent”: .

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY):

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4.

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:
 Watershed size: Pick List ; Drainage area: Pick List
 Average annual rainfall: inches
 Average annual snowfall: inches

 (ii) Physical Characteristics:
 (a) Relationship with TNW:
 - Tributary flows directly into TNW.
 - Tributary flows through Pick List tributaries before entering TNW.

 Project waters are Pick List river miles from TNW.
 Project waters are Pick List river miles from RPW.
 Project waters are Pick List aerial (straight) miles from TNW.
 Project waters are Pick List aerial (straight) miles from RPW.
 Project waters cross or serve as state boundaries. Explain: N/A.

 Identify flow route to TNW: .

4 Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West.

5 Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW.
Tributary stream order, if known:

(b) General Tributary Characteristics (check all that apply):

Tributary is:
- [] Natural

Tributary properties with respect to top of bank (estimate):
- Average width: feet
- Average depth: feet
- Average side slopes:

Primary tributary substrate composition (check all that apply):
- [] Silts
- [] Sands
- [] Concrete
- [] Cobble
- [] Gravel
- [] Muck
- [] Bedrock
- [] Vegetation. Type/% cover:
- [] Other. Explain: .

Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain: .

Tributary geometry:
- Pick List.

Tributary gradient (approximate average slope):

(c) Flow:

Tributary provides for:
- Pick List

Estimate average number of flow events in review area/year:
- Pick List

Describe flow regime: .

Other information on duration and volume: .

Surface flow is:
- Pick List. Characteristics:

Subsurface flow:
- Pick List. Explain findings: .
- [] Dye (or other) test performed: .

Tributary has (check all that apply):
- [] Bed and banks
- [] OHWM\(^6\) (check all indicators that apply):
 - clear, natural line impressed on the bank
 - changes in the character of soil
 - shelving
 - vegetation matted down, bent, or absent
 - leaf litter disturbed or washed away
 - sediment deposition
 - water staining
 - other (list):
- [] Discontinuous OHWM.\(^7\) Explain: .

If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply):
- [] High Tide Line indicated by:
 - oil or scum line along shore objects
 - fine shell or debris deposits (foreshore)
 - physical markings/characteristics
 - tidal gauges
- [] Mean High Water Mark indicated by:
 - survey to available datum;
 - physical markings;
 - vegetation lines/changes in vegetation types.

(iii) Chemical Characteristics:

Characterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.).

Explain: .

Identify specific pollutants, if known: .

(iv) Biological Characteristics. Channel supports (check all that apply):
- [] Riparian corridor. Characteristics (type, average width): .

\(^6\)A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody’s flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break.

\(^7\)Ibid.
Wetland fringe. Characteristics:

Habitat for:
- Federally Listed species. Explain findings:
- Fish/spawn areas. Explain findings:
- Other environmentally-sensitive species. Explain findings:
- Aquatic/wildlife diversity. Explain findings:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:
(a) General Wetland Characteristics:
Properties:
- Wetland size: acres
- Wetland type. Explain:
- Wetland quality. Explain:
Project wetlands cross or serve as state boundaries. Explain:

(b) General Flow Relationship with Non-TNW:
Flow is: Pick List. Explain:
Surface flow is: Pick List.
Characteristics:
Subsurface flow: Pick List. Explain findings:
- Dye (or other) test performed:

(c) Wetland Adjacency Determination with Non-TNW:
- Directly abutting
- Not directly abutting
- Discrete wetland hydrologic connection. Explain:
- Ecological connection. Explain:
- Separated by berm/barrier. Explain:

(d) Proximity (Relationship) to TNW
Project wetlands are Pick List river miles from TNW.
Project waters are Pick List aerial (straight) miles from TNW.
Flow is from: Pick List.
Estimate approximate location of wetland as within the Pick List floodplain.

(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain:
Identify specific pollutants, if known:

(iii) Biological Characteristics. Wetland supports (check all that apply):
- Riparian buffer. Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
- Habitat for:
 - Federally Listed species. Explain findings:
 - Fish/spawn areas. Explain findings:
 - Other environmentally-sensitive species. Explain findings:
 - Aquatic/wildlife diversity. Explain findings:

3. Characteristics of all wetlands adjacent to the tributary (if any)
All wetland(s) being considered in the cumulative analysis: Pick List
Approximately () acres in total are being considered in the cumulative analysis.

For each wetland, specify the following:
<table>
<thead>
<tr>
<th>Directly abuts? (Y/N)</th>
<th>Size (in acres)</th>
<th>Directly abuts? (Y/N)</th>
<th>Size (in acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g., between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below:

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary itself; then go to Section III.D:

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands; then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands; then go to Section III.D:

Documentation for the Record only: Significant nexus findings for seasonal RPWs and/or wetlands abutting seasonal RPWs:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY):

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs: linear feet width (ft), Or, acres.
 - Wetlands adjacent to TNWs: acres.

2. RPWs that flow directly or indirectly into TNWs.
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial: The tributary located near the northeastern property boundary, which is labeled Jurisdictional Tributary 3 on the sketch, was determined to have perennial flow based on a review of the aerials, soil survey, and NWIs, and information obtained during the site visit. This tributary is depicted as a meandering stream on the aerials. The NWIs map this tributary as a wetland (PFO1B), and the soil survey maps the tributary as Lakeland, a non-hydric soil. This tributary continues flowing northeast into Back Swamp, a perennial RPW, which flows into the Great Pee Dee River, a TNW.

 Provide estimates for jurisdictional waters in the review area (check all that apply):
Tributary waters: 722 linear feet 10 width (ft).

Other non-wetland waters: acres.

Identify type(s) of waters: .

3. **Non-RPWs** that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide estimates for jurisdictional waters within the review area (check all that apply):
 - Tributary waters: linear feet width (ft).
 - Other non-wetland waters: acres.
 - Identify type(s) of waters: .

4. **Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.**
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow “seasonally.” Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW:

 Provide acreage estimates for jurisdictional wetlands in the review area: acres.

5. **Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs.**
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetlands in the review area: acres.

6. **Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.**
 - Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide estimates for jurisdictional wetlands in the review area: acres.

7. **Impoundments of jurisdictional waters.**
 - As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional.
 - Demonstrate that impoundment was created from “waters of the U.S.,” or
 - Demonstrate that water meets the criteria for one of the categories presented above (1-6), or
 - Demonstrate that water is isolated with a nexus to commerce (see E below).

 Explain:

E. **ISOLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY SUCH WATERS (CHECK ALL THAT APPLY):**
 - which are or could be used by interstate or foreign travelers for recreational or other purposes.
 - from which fish or shellfish are or could be taken and sold in interstate or foreign commerce.
 - which are or could be used for industrial purposes by industries in interstate commerce.
 - Interstate isolated waters. Explain: .
 - Other factors. Explain: .

 Identify water body and summarize rationale supporting determination: .

 Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters: linear feet width (ft).
 - Other non-wetland waters: acres.

8See Footnote # 3.
9 To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook.
10 Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos.
Identify type(s) of waters:
- Wetlands: acres.

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY):
- If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements.
- Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce.
- Prior to the Jan 2001 Supreme Court decision in “SWANCC,” the review area would have been regulated based solely on the “Migratory Bird Rule” (MBR).
- Waters do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction. Explain: .
- Other: (explain, if not covered above): .

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):
- Non-wetland waters (i.e., rivers, streams): linear feet width (ft).
- Lakes/ponds: acres.
- Other non-wetland waters: acres. List type of aquatic resource: .
- Wetlands: acres.

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):
- Non-wetland waters (i.e., rivers, streams): linear feet width (ft).
- Lakes/ponds: acres.
- Other non-wetland waters: acres. List type of aquatic resource: .
- Wetlands: acres.

SECTION IV: DATA SOURCES.

A. SUPPORTING DATA. Data reviewed for JD (check all that apply) - checked items shall be included in case file and, where checked and requested, appropriately reference sources below:
- Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: Report and drawings by The Brigman Co., Inc.
- Data sheets prepared/submitted by or on behalf of the applicant/consultant.
 - Office concurs with data sheets/delineation report.
 - Office does not concur with data sheets/delineation report.
- Data sheets prepared by the Corps:
 - USACE Navigability Study Report No. 11.
- USGS NHD data.
- USGS 8 and 12 digit HUC maps.
- US. Geological Survey map(s). Cite scale & quad name: Witherspoon Island; The topographic map depicts this tributary as a forested area.
- USDA Natural Resources Conservation Service Soil Survey. Citation: Page 2; The soil survey maps the tributary as Lakeland, a non-hydric soil.
- National wetlands inventory map(s). Cite name: The NWIs map the tributary as palustrine wetlands (PFO1B).
- State/Local wetland inventory map(s): .
- FEMA/FIRM maps: .
- 100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)
- Photographs: Aerial (Name & Date): SCDNR 2006, 99:11227:6; The aerials depict this tributary as forested.
 - or Other (Name & Date): Site photos dated July 2018.
- Previous determination(s). File no. and date of response letter: .
- Applicable/supporting case law: .
- Applicable/supporting scientific literature: .
- Other information (please specify): .

B. ADDITIONAL COMMENTS TO SUPPORT JD: The tributary located near the northeastern property boundary, which is labeled Jurisdictional Tributary 3 on the sketch, was determined to have perennial flow based on a review of the aerials, soil survey, NWIs, and information obtained during the site visit. This tributary is depicted as a meandering stream on the aerials. The NWIs map this tributary as a wetland (PFO1B), and the soil survey maps the tributary as Lakeland, a non-hydric soil. This tributary continues flowing northeast into Back Swamp, a perennial RPW, which flows into the Great Pee Dee River, a TNW.
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): December 21, 2018

B. DISTRICT OFFICE, FILE NAME, AND NUMBER: CESAC-RDE; JD Form 5 of 5; SAC 2018-01269 Williston Road Tract

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
 State: South Carolina County/parish/borough: Florence City:
 Center coordinates of site (lat/long in degree decimal format): Lat. 34.2810° N, Long. -79.6954° W.
 Universal Transverse Mercator:
 Name of nearest waterbody: Back Creek
 Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Great Pee Dee River
 Name of watershed or Hydrologic Unit Code (HUC): 03040201-08
 Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request.
 Check if other sites (e.g., offsite mitigation sites, disposal sites, etc…) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY):
 Office (Desk) Determination. Date:
 Field Determination. Date(s): October 10, 2018

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION.

There are no “navigable waters of the U.S.” within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area. [Required]

B. CWA SECTION 404 DETERMINATION OF JURISDICTION.

There are “waters of the U.S.” within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required]

1. Waters of the U.S.
 a. Indicate presence of waters of U.S. in review area (check all that apply): 1
 - TNWs, including territorial seas
 - Wetlands adjacent to TNWs
 - Relatively permanent waters\(^2\) (RPWs) that flow directly or indirectly into TNWs
 - Non-RPWs that flow directly or indirectly into TNWs
 - Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 - Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 - Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 - Impoundments of jurisdictional waters
 - Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area:
 Non-wetland waters: (Jurisdictional Tributary 4) 272 linear feet: 10 width (ft) and/or acres.
 Wetlands: acres.

 c. Limits (boundaries) of jurisdiction based on: Established by OHWM., Pick List, Pick List
 Elevation of established OHWM (if known): N/A.

2. Non-regulated waters/wetlands (check if applicable): 3
 - Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional. Explain:

1 Boxes checked below shall be supported by completing the appropriate sections in Section III below.
2 For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least “seasonally” (e.g., typically 3 months).
3 Supporting documentation is presented in Section III.F.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: Great Pee Dee River.

 Summarize rationale supporting determination: According to USACE Navigability Study Report No. 11, the Great Pee Dee River’s recommended limit of navigability is located at River Mile (RM) 188.2. The project waters enter the Great Pee Dee at approximately RM 112.

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is “adjacent”:

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY):

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4.

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.2 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 Watershed size: Pick List ;
 Drainage area: Pick List
 Average annual rainfall: inches
 Average annual snowfall: inches

 (ii) Physical Characteristics:

 (a) Relationship with TNW:

 ☐ Tributary flows directly into TNW.
 ☐ Tributary flows through Pick List tributaries before entering TNW.

 Project waters are Pick List river miles from TNW.
 Project waters are Pick List river miles from RPW.
 Project waters are Pick List aerial (straight) miles from TNW.
 Project waters are Pick List aerial (straight) miles from RPW.
 Project waters cross or serve as state boundaries. Explain: N/A.

 Identify flow route to TNW5: .

4 Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West.

5 Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW.
Tributary stream order, if known:

(b) General Tributary Characteristics (check all that apply):

Tributary is:
- Natural
- Artificial (man-made). Explain:
- Manipulated (man-altered). Explain:

Tributary properties with respect to top of bank (estimate):
- Average width: feet
- Average depth: feet
- Average side slopes: Pick List.

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Cobble
- Gravel
- Muck
- Bedrock
- Vegetation. Type/% cover:
- Other. Explain:

Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain:

Presence of run/riffle/pool complexes. Explain:

Tributary geometry: Pick List.

Tributary gradient (approximate average slope):

(c) Flow:

Tributary provides for: Pick List

Describe flow regime:

Estimate average number of flow events in review area/year: Pick List

Other information on duration and volume:

Surface flow is: Pick List. Characteristics:

Subsurface flow: Pick List. Explain findings:
- Dye (or other) test performed:

Tributary has (check all that apply):
- Bed and banks
- OHWM8 (check all indicators that apply):
 - clear, natural line impressed on the bank
 - changes in the character of soil
 - shelving
 - vegetation matted down, bent, or absent
 - leaf litter disturbed or washed away
 - sediment deposition
 - water staining
 - other (list):
- Discontinuous OHWM.7 Explain:

If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply):
- High Tide Line indicated by:
 - oil or scum line along shore objects
 - fine shell or debris deposits (foreshore)
 - physical markings/characteristics
 - tidal gauges
 - other (list):
- Mean High Water Mark indicated by:
 - survey to available datum;
 - physical markings;
 - vegetation lines/changes in vegetation types.

(iii) Chemical Characteristics:

Characterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.).

Explain:

Identify specific pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):
- Riparian corridor. Characteristics (type, average width):

8A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody’s flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break.

7Ibid.
2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:
 (a) General Wetland Characteristics:
 Properties:
 - Wetland size: ___ acres
 - Wetland type. Explain: ___
 - Wetland quality. Explain: ___
 Project wetlands cross or serve as state boundaries. Explain: ___

 (b) General Flow Relationship with Non-TNW:
 Flow is: Pick List. Explain: ___
 Surface flow is: Pick List
 Characteristics: ___
 Subsurface flow: Pick List. Explain findings: ___
 Dye (or other) test performed: ___

 (c) Wetland Adjacency Determination with Non-TNW:
 Directly abutting
 Not directly abutting
 Discrete wetland hydrologic connection. Explain: ___
 Ecological connection. Explain: ___
 Separated by bern/barrier. Explain: ___

 (d) Proximity (Relationship) to TNW
 Project wetlands are Pick List river miles from TNW.
 Project waters are Pick List aerial (straight) miles from TNW.
 Flow is from: Pick List.
 Estimate approximate location of wetland as within the Pick List floodplain.

(ii) Chemical Characteristics:
 Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain: ___
 Identify specific pollutants, if known: ___

(iii) Biological Characteristics. Wetland supports (check all that apply):
 - Riparian buffer. Characteristics (type, average width): ___
 - Vegetation type/percent cover. Explain: ___
 - Habitat for:
 - Federally Listed species. Explain findings: ___
 - Fish/spawn areas. Explain findings: ___
 - Other environmentally-sensitive species. Explain findings: ___
 - Aquatic/wildlife diversity. Explain findings: ___

3. Characteristics of all wetlands adjacent to the tributary (if any)
 All wetland(s) being considered in the cumulative analysis: Pick List
 Approximately (___) acres in total are being considered in the cumulative analysis.

 For each wetland, specify the following:

 Directly abuts? (Y/N) Size (in acres) Directly abuts? (Y/N) Size (in acres)
C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below:

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary itself; then go to Section III.D: .

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands; then go to Section III.D: .

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands; then go to Section III.D: .

Documentation for the Record only: Significant nexus findings for seasonal RPWs and/or wetlands abutting seasonal RPWs: .

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY):

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs: ______ linear feet ______ width (ft), Or, ______ acres.
 - Wetlands adjacent to TNWs: ______ acres.

2. RPWs that flow directly or indirectly into TNWs.

 Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial: The tributary located near the northeastern property boundary, which is labeled Jurisdictional Tributary 4 on the sketch, was determined to have perennial flow based on a review of the aerials, soil survey, and NWIs, and information obtained during the site visit. This tributary is depicted as a meandering stream on the aerials. The NWIs map this tributary as a wetland (PFO1B), and the soil survey maps the tributary as Lakeland, a non-hydric soil. This tributary continues flowing north into Jurisdictional Tributary 3, a perennial RPW. Jurisdictional Tributary 3 flows into Back Swamp, a perennial RPW, which flows into the Great Pee Dee River, a TNW.

 Tributaries of TNW where tributaries have continuous flow “seasonally” (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: .

 Provide estimates for jurisdictional waters in the review area (check all that apply):
3. **Non-RPWs** that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide estimates for jurisdictional waters within the review area (check all that apply):
 - Tributary waters: linear feet width (ft).
 - Other non-wetland waters: acres.
 - Identify type(s) of waters: .

4. **Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.**
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: .
 - Wetlands directly abutting an RPW where tributaries typically flow “seasonally.” Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: .

 Provide acreage estimates for jurisdictional wetlands in the review area: acres.

5. **Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs.**
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetlands in the review area: acres.

6. **Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.**
 - Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide estimates for jurisdictional wetlands in the review area: acres.

7. **Impoundments of jurisdictional waters.**
 - As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional.
 - Demonstrate that impoundment was created from “waters of the U.S.,” or
 - Demonstrate that water meets the criteria for one of the categories presented above (1-6), or
 - Demonstrate that water is isolated with a nexus to commerce (see E below).

 Explain:

8. **ISOLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY SUCH WATERS (CHECK ALL THAT APPLY):**
 - which are or could be used by interstate or foreign travelers for recreational or other purposes.
 - from which fish or shellfish are or could be taken and sold in interstate or foreign commerce.
 - which are or could be used for industrial purposes by industries in interstate commerce.
 - Interstate isolated waters. Explain: .
 - Other factors. Explain: .

 Identify water body and summarize rationale supporting determination: .

 Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters: linear feet width (ft).
 - Other non-wetland waters: acres.

8See Footnote # 3.
9 To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook.
10 Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos.
F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY):

- Wetlands: acres.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non-wetland waters (i.e., rivers, streams): linear feet width (ft).
- Lakes/ponds: acres.
- Other non-wetland waters: acres. List type of aquatic resource: .
- Wetlands: acres.

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters (i.e., rivers, streams): linear feet, width (ft).
- Lakes/ponds: acres.
- Other non-wetland waters: acres. List type of aquatic resource: .
- Wetlands: acres.

SECTION IV: DATA SOURCES.

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: Report and drawings by The Brigman Co., Inc.
- Data sheets prepared/submitted by or on behalf of the applicant/consultant.
- Office concurs with data sheets/delineation report.
- Office does not concur with data sheets/delineation report.
- Data sheets prepared by the Corps: USACE Navigability Study Report No. 11.
- USGS NHD data.
- USGS 8 and 12 digit HUC maps.
- U.S. Geological Survey map(s). Cite scale & quad name: Witherspoon Island; The topographic map depicts this tributary as a forested area.
- USDA Natural Resources Conservation Service Soil Survey. Citation: Page 2; The soil survey maps the tributary as Lakeland, a non-hydric soil.
- National wetlands inventory map(s). Cite name: The NWIs map the tributary as palustrine wetlands (PFO1B).
- State/Local wetland inventory map(s): .
- FEMA/FIRM maps: .
- 100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)
- Photographs: Aerial (Name & Date): SCNR 2006, 99:11272:6; The aerials depict this tributary as forested. or Other (Name & Date): Site photos dated July 2018.
- Relevant determination(s). File no. and date of response letter: .
- Applicable/supporting case law: .
- Applicable/supporting scientific literature: .
- Other information (please specify): .

B. ADDITIONAL COMMENTS TO SUPPORT JD: The tributary located near the northeastern property boundary, which is labeled Jurisdictional Tributary 4 on the sketch, was determined to have perennial flow based on a review of the aerials, soil survey, NWIs, and information obtained during the site visit. This tributary is depicted as a meandering stream on the aerials. The NWIs map this tributary as a wetland (PFO1B), and the soil survey maps the tributary as Lakeland, a non-hydric soil. This tributary continues flowing north into Jurisdictional Tributary 3, a perennial RPW. Jurisdictional Tributary 3 flows into Back Swamp, a perennial RPW, which flows into the Great Pee Dee River, a TNW.