This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION
A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): February 11, 2020

B. DISTRICT OFFICE, FILE NUMBER, FILE NAME: JD Form 1 of 1; SAC-2019-00332 1828 Bohicket Rd

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
 State: South Carolina County/parish/borough: Charleston County City: Johns Island
 Center coordinates of site (lat/long in degree decimal format): Lat. 32.7196°, Long. -80.0800°.
 Universal Transverse Mercator:
 Name of nearest waterbody: Church Creek
 Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Church Creek
 Name of watershed or Hydrologic Unit Code (HUC): 0305020604 North Edisto River
 ☒ Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request.
 ☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc…) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY):
 ☐ Office (Desk) Determination. Date:
 ☒ Field Determination. Date(s): April 23, 2019

SECTION II: SUMMARY OF FINDINGS
A. RHA SECTION 10 DETERMINATION OF JURISDICTION.
 There are no “navigable waters of the U.S.” within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area. [Required]
 ☐ Waters subject to the ebb and flow of the tide.
 ☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce. Explain: .

B. CWA SECTION 404 DETERMINATION OF JURISDICTION.
 There are “waters of the U.S.” within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required]

 1. Waters of the U.S.
 a. Indicate presence of waters of U.S. in review area (check all that apply): 1
 ☐ TNWs, including territorial seas
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters² (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands
 b. Identify (estimate) size of waters of the U.S. in the review area:
 Non-wetland waters: linear feet: width (ft) and/or acres.
 Wetlands: 0.23 acres.
 Elevation of established OHWM (if known): .

 2. Non-regulated waters/wetlands (check if applicable): 3 [Including potentially jurisdictional features that upon assessment are NOT waters or wetlands]
 ☐ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional. Explain: .
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1 only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

Identify TNW: .

Summarize rationale supporting determination: .

2. Wetland adjacent to TNW

Summarize rationale supporting conclusion that wetland is “adjacent”: .

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY):

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4.

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody\(^4\) is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:
 Watershed size: \(~180\) acres
 Drainage area: \(~180\) acres
 Average annual rainfall: 48-52 inches
 Average annual snowfall: 0 inches

 (ii) Physical Characteristics:
 (a) Relationship with TNW:
 \(\checkmark\) Tributary flows directly into TNW.
 \(\square\) Tributary flows through Pick List tributaries before entering TNW.

 Project waters are 1 (or less) river miles from TNW.
 Project waters are 1 (or less) river miles from RPW.
 Project waters are 1 (or less) aerial (straight) miles from TNW.
 Project waters are 1 (or less) aerial (straight) miles from RPW.
 Project waters cross or serve as state boundaries. Explain: .

 Identify flow route to TNW\(^5\): Flow is from the onsite wetland that extends offsite towards Maybank Highway where water flows under Maybank Hwy via culvert, to a non-jurisdictional roadside surface conveyance underground

\(^4\) Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West.

\(^5\) Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW.
through a stormwater drainage culvert, to an above-ground stormwater pond, under Brownswood Rd by culvert, to the tributary to an un-named TNW tidal creek to TNW Church Creek.

Tributary stream order, if known:

(b) General Tributary Characteristics (check all that apply):

Tributary is: □ Natural □ Artificial (man-made). Explain:
□ Manipulated (man-altered). Explain: Tributary appears to be excavated and engineered through uplands.

Tributary properties with respect to top of bank (estimate):

- Average width: ~3 feet
- Average depth: ~1 foot
- Average side slopes: 2:1.

Primary tributary substrate composition (check all that apply):

☒ Silts ☒ Sands ☐ Muck
☐ Cobsbles ☐ Gravel ☐ Vegetation. Type/cover:
☐ Bedrock ☐ Other. Explain:

Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain: Stable, some minor erosion at constrictions.

Tributary geometry: Meandering.

Tributary gradient (approximate average slope): ~1 %

(c) Flow:

Tributary provides for: Seasonal flow

Estimate average number of flow events in review area/year: 2-5

Describe flow regime:

Other information on duration and volume:

Surface flow is: Discrete and confined. Characteristics: The flow is discrete and confined through the tributary channel.

Subsurface flow: Unknown. Explain findings:

Dye (or other) test performed:

Tributary has (check all that apply):

☒ Bed and banks ☒ OHWM\(^6\) (check all indicators that apply):
☒ clear, natural line impressed on the bank
☒ changes in the character of soil
☒ shelving
☒ vegetation matted down, bent, or absent
☒ leaf litter disturbed or washed away
☒ sediment deposition
☒ water staining
☒ other (list):

Discontinuous OHWM.\(^7\) Explain:

If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply):

☒ High Tide Line indicated by:
☐ oil or scum line along shore objects
☐ fine shell or debris deposits (foreshore)
☐ physical markings/characteristics
☐ tidal gauges
☐ other (list):

Mean High Water Mark indicated by:

☐ survey to available datum;
☐ physical markings;
☐ vegetation lines/changes in vegetation types.

(iii) Chemical Characteristics:

\(^6\)A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody’s flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break.

\(^7\)Ibid.
Characterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.).

Explain: In areas where water was present during the site visit, water was generally clear and clean, no chemical analysis conducted, no significant point source pollutants along drainage route.

Identify specific pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian corridor. Characteristics (type, average width): Tributary constructed into upland landscape; higher humidity and shading in riparian zones.
- Wetland fringe. Characteristics:
- Habitat for:
 - Federally Listed species. Explain findings:
 - Fish/spawn areas. Explain findings:
 - Other environmentally-sensitive species. Explain findings:
 - Aquatic/wildlife diversity. Explain findings:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics:

Properties:
- Wetland size: 0.23 acres
- Wetland type. Explain: Palustrine forested depressional wetland.
- Wetland quality. Explain: good; high diversity of vegetation; may have been affected by recent nearby development.

Project wetlands cross or serve as state boundaries. Explain:

(b) General Flow Relationship with Non-TNW:

Flow is: Intermittent flow. Explain:

Surface flow is: Discrete and confined Characteristics:

Subsurface flow: Unknown. Explain findings:
- Dye (or other) test performed:

(c) Wetland Adjacency Determination with Non-TNW:

- Directly abutting
- Not directly abutting
- Discrete wetland hydrologic connection. Explain: Continuous surface connection from wetland to downstream tributary. Flow is from the onsite wetland that extends offsite towards Maybank Highway where water flows under Maybank Hwy via culvert, to a non-jurisdictional roadside surface conveyance underground through a stormwater drainage culvert, to an above-ground stormwater pond, under Brownswood Rd by culvert, to the tributary to an un-named TNW tidal creek to TNW Church Creek.

- Ecological connection. Explain:
- Separated by berm/barrier. Explain:

(d) Proximity (Relationship) to TNW

Project wetlands are 1 (or less) river miles from TNW.

Project waters are 1 (or less) aerial (straight) miles from TNW.

Flow is from: Wetland to navigable waters.

Estimate approximate location of wetland as within the 2 - 5-year floodplain.

(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain: Observed water color is clear, tannin-stained; no known significant pollution point sources.

Identify specific pollutants, if known:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian buffer. Characteristics (type, average width):
- Vegetation type/percent cover. Explain: Southeastern wetland hardwood canopy, midstory, and understory.
- Habitat for:
 - Federally Listed species. Explain findings:
 - Fish/spawn areas. Explain findings:
 - Other environmentally-sensitive species. Explain findings: Aquatic herps and insects.
 - Aquatic/wildlife diversity. Explain findings: Wading birds, ducks, and freshwater fish.
3. Characteristics of all wetlands adjacent to the tributary (if any)

 All wetland(s) being considered in the cumulative analysis: 2

 Approximately (40) acres in total are being considered in the cumulative analysis.

 For each wetland, specify the following:

<table>
<thead>
<tr>
<th>Directly abuts? (Y/N)</th>
<th>Size (in acres)</th>
<th>Directly abuts? (Y/N)</th>
<th>Size (in acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 Summarize overall biological, chemical and physical functions being performed:

 The on-site wetlands provide important biological, chemical, and physical functions to the downstream TNW. The tributary and adjacent wetlands act as a catch basin to help filter out pollutants from the neighboring uplands and hold runoff prior to it flowing downstream into the TNW. Besides the obvious functions of stormwater attenuation, absorption, and overstory biomass input into the food web, the RPW and its adjacent wetlands provide a uniquely important ecological connection to the downstream TNW. The onsite wetlands are providing important biological, chemical, and physical functions within a watershed comprised of residential and commercial developments, forested wetlands, and previously utilized as agricultural lands. The biological functions being performed include providing breeding grounds and shelter for aquatic animals and diversifying the plant life within the watershed. As a result, the waters of the US in the drainage area supply food sources for a variety of water dependent species, such as invertebrates, amphibians, reptiles, and mammals. The tributary and its adjacent wetlands are essential in providing organic carbons in the form of their collective primary productivity to downstream waters, resulting in the nourishment of the downstream foodweb. The chemical functions being performed consist of the removal of excess pollutants, which are contributed by runoff from the surrounding uplands, from the downstream TNW. This reduces nitrogen and phosphorus loading downstream and effectively prevents oxygen depletion that can result from eutrophication. Physically, the tributary and adjacent wetlands help reduce stormwater flow. Not only does this prevent the accumulation of sediment downstream, which can smother fish and other aquatic wildlife, but it also reduces the amount of pollutants downstream because these pollutants are usually transported by sediment particles. This helps to maintain flow volumes.

C. SIGNIFICANT NEXUS DETERMINATION

 A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical, and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

 Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

 - Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
 - Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
 - Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
 - Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

 Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below:

 1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D: .

 2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: .

 3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: Due to the land use in this watershed and in the drainage area, herbicides and other pollutants are likely to
enter the tributary and downstream TNW. Furthermore, the RPW and its adjacent wetlands provide stormwater attenuation, absorption, and overstory biomass input into the food web. These waters also provide an important ecological connection to the downstream TNW via important biological, chemical, and physical functions within a watershed comprised primarily of agricultural land use. The biological functions being performed include providing breeding grounds and shelter for aquatic animals and diversifying the plant life within the watershed. The waters of the US in the drainage area also supply food sources for a variety of water dependent species, such as invertebrates, amphibians, reptiles, and mammals. The tributary is essential in providing organic carbons in the form of their collective primary productivity to downstream waters, resulting in the nourishment of the downstream foodweb. The chemical functions being performed consist of the removal of excess pollutants, which are contributed by runoff from the surrounding agricultural areas and uplands, from the downstream TNW. This reduces nitrogen and phosphorus loading downstream and effectively prevents oxygen depletion that can result from eutrophication. Physically, the tributary and adjacent wetlands help reduce stormwater flow. This prevents the accumulation of sediment downstream, which can smother fish and other aquatic wildlife, and also reduces the amount of pollutants downstream because these pollutants are usually transported by sediment particles. This helps to maintain flow volumes. Therefore, based on the collective functions described above and their importance to the biological, chemical, and physical integrity of the traditional navigable waters of Church Creek, it has been determined that there is a significant nexus between the relevant reach of the tributary and its adjacent wetlands, to the downstream TNW.

Documentation for the Record only: Significant nexus findings for seasonal RPWs and/or wetlands abutting seasonal RPWs: See above in Section III C. 3.

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY):

1. **TNWs and Adjacent Wetlands.** Check all that apply and provide size estimates in review area:
 - TNWs: linear feet width (ft), Or, acres.
 - Wetlands adjacent to TNWs: acres.

2. **RPWs that flow directly or indirectly into TNWs.**
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial: .
 - Tributaries of TNW where tributaries have continuous flow “seasonally” (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: .
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters: linear feet width (ft).
 - Other non-wetland waters: acres.
 - Identify type(s) of waters: .

3. **Non-RPWs** that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C. Provide estimates for jurisdictional waters within the review area (check all that apply):
 - Tributary waters: linear feet width (ft).
 - Other non-wetland waters: acres.
 - Identify type(s) of waters: .

4. **Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.**
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: .
 - Wetlands directly abutting an RPW where tributaries typically flow “seasonally.” Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: .
 - Provide acreage estimates for jurisdictional wetlands in the review area: acres.

5. **Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs.**

See Footnote # 3.
Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetlands in the review area: 0.23 acres.

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
 - Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetlands in the review area: acres.

7. Impoundments of jurisdictional waters.9
 - As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional.
 - Demonstrate that impoundment was created from “waters of the U.S.,” or
 - Demonstrate that water meets the criteria for one of the categories presented above (1-6), or
 - Demonstrate that water is isolated with a nexus to commerce (see E below).

 Explain:

E. ISOLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY SUCH WATERS (CHECK ALL THAT APPLY):10
 - which are or could be used by interstate or foreign travelers for recreational or other purposes.
 - from which fish or shellfish are or could be taken and sold in interstate or foreign commerce.
 - which are or could be used for industrial purposes by industries in interstate commerce.
 - Interstate isolated waters. Explain: .
 - Other factors. Explain: .

Identify water body and summarize rationale supporting determination: .

Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters: linear feet width (ft).
 - Other non-wetland waters: acres.
 - Identify type(s) of waters: .
 - Wetlands: acres.

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY):
 - If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements.
 - Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce.
 - Prior to the Jan 2001 Supreme Court decision in “SWANCC,” the review area would have been regulated based solely on the “Migratory Bird Rule” (MBR).
 - Waters do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction. Explain: .
 - Other: (explain, if not covered above): .

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):
 - Non-wetland waters (i.e., rivers, streams): linear feet width (ft).
 - Lakes/ponds: acres.
 - Other non-wetland waters: acres. List type of aquatic resource: .
 - Wetlands: acres.

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):
 - Non-wetland waters (i.e., rivers, streams): linear feet, width (ft).
 - Lakes/ponds: acres.
 - Other non-wetland waters: acres. List type of aquatic resource: .
 - Wetlands: acres.

9 To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook.
10 Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos.
SECTION IV: DATA SOURCES.

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☒ Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: Provided by Newkirk Environmental, Inc.
☒ Data sheets prepared/submitted by or on behalf of the applicant/consultant.
☒ Office concurs with data sheets/delineation report. Office concurs with general findings.
☐ Office does not concur with data sheets/delineation report.
☐ Data sheets prepared by the Corps: .
☐ Corps navigable waters' study: .
☐ USGS NHID data.
☐ USGS 8 and 12 digit HUC maps.
☒ U.S. Geological Survey map(s). Cite scale & quad name: Legareville.
☐ USDA Natural Resources Conservation Service Soil Survey. Citation: Stono.
☐ National wetlands inventory map(s). Cite name: PFO1/4B.
☐ State/Local wetland inventory map(s): .
☐ FEMA/FIRM maps: .
☐ 100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)
☒ Photographs: ☒ Aerial (Name & Date): Google Earth Imagery.
☐或其他 (Name & Date): LIDAR.
☐ Applicable/supporting case law: .
☐ Applicable/supporting scientific literature: .
☐ Other information (please specify): .

B. ADDITIONAL COMMENTS TO SUPPORT JD: The onsite wetland is adjacent to Waters of the U.S. and has been demonstrated to have a Significant Nexus to the downstream TNW, Church Creek estuary. Therefore, it is the determination of this office that the 0.23-acre wetland is subject to jurisdiction under Section 404 of the Clean Water Act.