This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): January 17, 2018

B. DISTRICT OFFICE, FILE NUMBER, FILE NAME: JD Form 1 of 1; SAC-2017-01664 Livingston - Mill Swamp Tract

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
 State: South Carolina County/parish/borough: Horry County
 City:
 Center coordinates of site (lat/long in degree decimal format): Lat. 33.8605° N, Long. -78.7838° W
 Universal Transverse Mercator:
 Name of nearest waterbody: Waccamaw River
 Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Waccamaw River
 Name of watershed or Hydrologic Unit Code (HUC): Waccamaw River / 0304020607

 Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request.
 Check if other sites (e.g., offsite mitigation sites, disposal sites, etc…) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY):
 ☑ Office (Desk) Determination. Date:
 ☑ Field Determination. Date(s): October 31, 2017

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION.

 There are no “navigable waters of the U.S.” within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area. [Required]

 Waters subject to the ebb and flow of the tide.
 Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce. Explain:

B. CWA SECTION 404 DETERMINATION OF JURISDICTION.

 There are “waters of the U.S.” within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required]

 1. Waters of the U.S.
 a. Indicate presence of waters of U.S. in review area (check all that apply):
 ☐ TNWs, including territorial seas
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters2 (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area:
 Non-wetland waters: 1364 linear feet: 12 width (ft) and/or 12 acres.
 Wetlands: Wetland 1 / 17.10 acres + Wetland 2 / 2.00 acres = 19.10 acres.

 c. Limits (boundaries) of jurisdiction based on: 1987 Delineation Manual, Pick List, Pick List
 Elevation of established OHWM (if known): .

 2. Non-regulated waters/wetlands (check if applicable):3 [Including potentially jurisdictional features that upon assessment are NOT waters or wetlands]

1 Boxes checked below shall be supported by completing the appropriate sections in Section III below.
2 For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least “seasonally” (e.g., typically 3 months).
3 Supporting documentation is presented in Section III.F.
Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional. Explain: Located onsite are two upland excavated non jurisdictional ditches and a single upland excavated pond that do not exhibit characteristics of a jurisdictional feature.

SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: Waccamaw River.
 Summarize rationale supporting determination: Subject to the ebb and flow of the tide.

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is “adjacent”: .

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY):

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4.

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:
 Watershed size: 382,983 acres;
 Drainage area: 8000 acres
 Average annual rainfall: 52 inches
 Average annual snowfall: 0 inches

 (ii) Physical Characteristics:
 (a) Relationship with TNW:
 ☑ Tributary flows directly into TNW.
 ☐ Tributary flows through Pick List tributaries before entering TNW.
 Project waters are (or less) river miles from TNW.
 Project waters are (or less) river miles from RPW.
 Project waters are (or less) aerial (straight) miles from TNW.
 Project waters are (or less) aerial (straight) miles from RPW.
 Project waters cross or serve as state boundaries. Explain: .

4 Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West.
Identify flow route to TNW\(^5\): Tributary is identified as Mill Swamp which flows directly into the Waccamaw River.

Tributary stream order, if known: 1.

(b) General Tributary Characteristics (check all that apply):

Tributary is: ☒ Natural
☐ Artificial (man-made). Explain:
☐ Manipulated (man-altered). Explain:

Tributary properties with respect to top of bank (estimate):
- Average width: 15 feet
- Average depth: unknown feet
- Average side slopes: Vertical (1:1 or less).

Primary tributary substrate composition (check all that apply):
- ☒ Silts
- ☒ Sands
- ☐ Concrete
- ☒ Cobbles
- ☒ Gravel
- ☐ Muck
- ☒ Bedrock
- ☒ Vegetation. Type/cover: nearly 100%
- ☐ Other. Explain:

Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain: stable / vegetated corridor.

Tributary geometry: Meandering, natural

Tributary gradient (approximate average slope): 0-1%

(c) Flow:

Tributary provides for: Perennial flow

Estimate average number of flow events in review area/year: 20 (or greater)

Describe flow regime: perennial flow of a major tributary of a TNW Flow was determined to be at least 90 percent of the year under normal climatic conditions.

Other information on duration and volume: .

Surface flow is: Discrete and confined. Characteristics: .

Subsurface flow: Unknown. Explain findings: .

☐ Dye (or other) test performed:

Tributary has (check all that apply):
- ☒ Bed and banks
- ☒ OHWM\(^6\) (check all indicators that apply):
 - ☒ clear, natural line impressed on the bank
 - ☒ changes in the character of soil
 - ☒ shelving
 - ☒ vegetation matted down, bent, or absent
 - ☒ leaf litter disturbed or washed away
 - ☒ sediment deposition
 - ☒ water staining
 - ☒ other (list):
- ☐ Discontinuous OHWM.\(^7\) Explain:

If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply):
- ☐ High Tide Line indicated by:
 - ☐ oil or scum line along shore objects
 - ☐ fine shell or debris deposits (foreshore)
 - ☐ physical markings/characteristics
 - ☐ tidal gauges
 - ☐ other (list):
- ☒ Mean High Water Mark indicated by:
 - ☐ survey to available datum;
 - ☒ physical markings;
 - ☒ vegetation lines/changes in vegetation types.

(iii) Chemical Characteristics:

Characterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.).

Explain: Typical blackwater stained by tannic acids as typical of this geographic area, clear and primarily free of

\(^5\) Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW.

\(^6\) A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody’s flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break.

\(^7\) Ibid.
sediments. Chemical composition is unknown, however the tributary flows through vegetated areas and is recharged by adjacent, fully forested riparian wetlands that provide natural filtering capabilities.

Identify specific pollutants, if known: none known at this time, some adjacent residential and agricultural areas may contribute to pollutants.

(iv) Biological Characteristics. Channel supports (check all that apply):

☐ Riparian corridor. Characteristics (type, average width):

☐ Wetland fringe. Characteristics: nearly 100% forested.

☐ Habitat for:

☐ Federally Listed species. Explain findings:

☐ Fish/spawn areas. Explain findings:

☐ Other environmentally-sensitive species. Explain findings:

☒ Aquatic/wildlife diversity. Explain findings: Fully functioning and healthy riparian habitat.

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics:

Properties:

Wetland size: 19.10 acres
Wetland type. Explain: Palustrine forested / undistrubed.
Project wetlands cross or serve as state boundaries. Explain:

(b) General Flow Relationship with Non-TNW:

Flow is: Intermittent flow. Explain: during wetter month, periods of normal rainfall, or after major rain events.

Surface flow is: Discrete

Characteristics: Drainage patters observed in wetlands.

Subsurface flow: Unknown. Explain findings:

☐ Dye (or other) test performed:

(c) Wetland Adjacency Determination with Non-TNW:

☐ Directly abutting

☒ Not directly abutting

Discrete wetland hydrologic connection. Explain: Wetland 2 is bisected by a drainage ditch that discharges directly into Mill Swamp. Also, this wetland continues offsite and abutts the OHWM of Mill Swamp.

☐ Ecological connection. Explain:

☐ Separated by berm/barrier. Explain:

(d) Proximity (Relationship) to TNW

Project wetlands are 1 (or less) river miles from TNW.

Project waters are 1 (or less) aerial (straight) miles from TNW.

Flow is from: Wetland to navigable waters.

Estimate approximate location of wetland as within the 100 - 500-year floodplain.

(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain: Wetlands are in their natural, primarily undistrubed state. Surface water is present in Wetland 1 as it is bisected by Mill Swamp. Wetland 2 was saturated with no surface water visible during the site visit. This wetland continues offsite and is both bisected by a excavated ditch and continues across this feature to abutt Mill Swamp.

Identify specific pollutants, if known: Non known.

(iii) Biological Characteristics. Wetland supports (check all that apply):

☒ Riparian buffer. Characteristics (type, average width): Mixed pine and hardwood forest.

☒ Vegetation type/percent cover. Explain: 100% of FAC or wetter species.

☐ Habitat for:

☐ Federally Listed species. Explain findings:

☒ Fish/spawn areas. Explain findings: The perennial nature of Mill Swamp is such that it supports aquatic species of fish and amphibians that forage and spawn in waterbodies of these type (consistantly containing fresh flowing water).

☐ Other environmentally-sensitive species. Explain findings:

☒ Aquatic/wildlife diversity. Explain findings: This wetland system enhances a variety of wildlife species by providing diversity through timber type changes and where an aquatic system adjoins an upland system.

3. Characteristics of all wetlands adjacent to the tributary (if any)
All wetland(s) being considered in the cumulative analysis: 8
Approximately (7220) acres in total are being considered in the cumulative analysis.
For each wetland, specify the following:

<table>
<thead>
<tr>
<th>Directly abuts? (Y/N)</th>
<th>Size (in acres)</th>
<th>Directly abuts? (Y/N)</th>
<th>Size (in acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>5531</td>
<td>Y</td>
<td>411</td>
</tr>
<tr>
<td>Y</td>
<td>180</td>
<td>Y</td>
<td>178</td>
</tr>
<tr>
<td>Y</td>
<td>613</td>
<td>Y</td>
<td>136</td>
</tr>
<tr>
<td>N</td>
<td>39</td>
<td>N</td>
<td>48</td>
</tr>
<tr>
<td>N</td>
<td>2</td>
<td>N</td>
<td>3</td>
</tr>
<tr>
<td>N</td>
<td>22</td>
<td>N</td>
<td>57</td>
</tr>
</tbody>
</table>

Summarize overall biological, chemical and physical functions being performed: The similarly situated wetlands contribute vital biological, chemical, and physical functions to the downstream TNW. This wetland system enhances wildlife diversity, acts as catch basins filtering sediment and pollutants from surrounding urban development and silvicultural practices, supports the downstream food web, and provides nutrient fixation, flood attenuation and flow maintenance functions. A large component of these wetlands are Carolina Bays that make up part of the Lewis Ocean Bay Heritage Preserve operated by the SCDNR. These wetlands represent a significant contiguous wetland complex that further enhance the significant nexus of all these adjacent wetlands. See III.C.3. below for more details.

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below:

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D:

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: The Forested wetlands adjacent to this perennial RPW include mixed hardwood/pine palustrine forested depressional wetlands. The wetlands which are similarly situated and adjacent to the perennial RPW are collectively performing functions consistent with following: Biological- A variety of biological functions are being performed which include providing breeding grounds, shelter, foraging, nesting and travel corridors for aquatic and wetland-dependent species. They enhance wildlife diversity through timber type changes and the transition between upland and aquatic systems. The wetlands are essential in providing collective primary productivity to downstream waters by supplying organic carbon, resulting in the nourishment of the downstream food web. Chemical- The wetlands and tributary within the review area are providing the important collective functions of removal of excess nutrients which are contributed by
runoff from surrounding urban and silvicultural areas, reducing nitrogen and phosphorus loading downstream, and effectively preventing oxygen depletion that can result from eutrophication. Physical- The wetlands and tributary in the review area are collectively filtering sediments and pollutants carried by stormwater runoff from roads, urban development and silviculture areas. They are providing flood attenuation and flow maintenance functions by retaining runoff and releasing it slowly, which results in the reduction of downstream peak flows (discharge and volumes) and lower continuous flow volumes. Wetlands such as the ones identified in this reach are actively storing stormwater runoff from adjacent development and silvicultural areas. Based on the collective functions described above and their importance to the biological, chemical, and physical integrity of the traditional navigable waters of the Waccamaw River, it has been determined that there is a significant nexus between the relevant reach of the tributary and adjacent wetlands to the downstream TNW.

Documentation for the Record only: Significant nexus findings for seasonal RPWs and/or wetlands abutting seasonal RPWs:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY):

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs: linear feet width (ft), Or, acres.
 - Wetlands adjacent to TNWs: acres.

2. RPWs that flow directly or indirectly into TNWs.
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial: Flow of offshore tributary was determined to be at least 90% of the year under normal climatic conditions. Stream geomorphic indicators of perennial flow were channel within bed and banks had a firm sandy bottom clear of vegetation and debris, sediment bars located adjacent to the channel which is evidence of perennial flow as well as hydrologic indicators observed within the channel of leaves being continuously washed downstream and water flowing after 48 hours from a rainfall event and flowing within growing season. Topographic maps depict a solid blue line which represents perennial flow, aerial photos depict water within a channel.

 - Tributaries of TNW where tributaries have continuous flow “seasonally” (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: .

 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters: 1200 linear feet 15 width (ft).
 - Other non-wetland waters: acres.
 - Identify type(s) of waters: .

3. Non-RPWs8 that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C. Provide estimates for jurisdictional waters within the review area (check all that apply):

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands directly abutting RPW and thus are jurisdictional as adjacent wetlands.

 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: Wetland 1 is bisected by the OHWM of Mill Swamp which is determined to be a perennial RPW.

 - Wetlands directly abutting an RPW where tributaries typically flow “seasonally.” Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: .

 - Provide acreage estimates for jurisdictional wetlands in the review area: Wetland 1 / 17.10 acres.

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs.

8See Footnote # 3.
Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetlands in the review area: Wetland 2 / 2.00 acres.

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
 Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetlands in the review area: acres.

7. Impoundments of jurisdictional waters.\(^9\)
 As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional.
 - Demonstrate that impoundment was created from “waters of the U.S.,” or
 - Demonstrate that water meets the criteria for one of the categories presented above (1-6), or
 - Demonstrate that water is isolated with a nexus to commerce (see E below).

 Explain:

E. ISOLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY SUCH WATERS (CHECK ALL THAT APPLY):\(^{10}\)
 - which are or could be used by interstate or foreign travelers for recreational or other purposes.
 - from which fish or shellfish are or could be taken and sold in interstate or foreign commerce.
 - which are or could be used for industrial purposes by industries in interstate commerce.
 - Interstate isolated waters. Explain: .
 - Other factors. Explain: .

Identify water body and summarize rationale supporting determination: .

Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters: linear feet width (ft).
 - Other non-wetland waters: acres.
 Identify type(s) of waters: .
 - Wetlands: acres.

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY):
 - If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements.
 - Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce.
 - Prior to the Jan 2001 Supreme Court decision in “SWANCC,” the review area would have been regulated based solely on the “Migratory Bird Rule” (MBR).
 - Waters do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction. Explain: .
 - Other: (explain, if not covered above): .

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):
 - Non-wetland waters (i.e., rivers, streams): linear feet width (ft).
 - Lakes/ponds: acres.
 - Other non-wetland waters: acres. List type of aquatic resource: .
 - Wetlands: acres.

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):
 - Non-wetland waters (i.e., rivers, streams): linear feet width (ft).
 - Lakes/ponds: 0.29 acres.
 - Other non-wetland waters: acres. List type of aquatic resource: .
 - Wetlands: acres.

\(^{9}\) To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook.
\(^{10}\) Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos.
SECTION IV: DATA SOURCES.

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☒ Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: The site in question is shown on the enclosed map entitled “Wetland Determination/Delineation / Mill Swamp Tract / Little River Township / Horry County, South Carolina / Tax Map Number 080-00-01-033” and dated October 4, 2017 prepared by The Brigman Company.
☒ Data sheets prepared/submitted by or on behalf of the applicant/consultant.
☒ Office concurs with data sheets/delineation report.
☐ Office does not concur with data sheets/delineation report.
☐ Data sheets prepared by the Corps: .
☐ Corps navigable waters’ study: .
☐ USGS NHD data.
☐ USGS 8 and 12 digit HUC maps.
☒ U.S. Geological Survey map(s). Cite scale & quad name: USGS topographic maps / Hand Quad / depicts undeveloped forested area with wetland symbology.
☒ USDA Natural Resources Conservation Service Soil Survey. Citation: Horry County Soil Survey / pg 64 / depicts Yauhannah, Pocomoke, and Leon soils (hydric).
☒ National wetlands inventory map(s). Cite name: Horry County NWI / depicts a mixture of U42P (uplands) and PFOBd & PSS3/4Bd (palustrine wetlands).
☐ State/Local wetland inventory map(s): .
☐ FEMA/FIRM maps: .
☐ 100-year Floodplain Elevation is: (National Geodectic Vertical Datum of 1929)
☒ Photographs: ☒ Aerial (Name & Date): 2016 Google Earth Imagery, 2006 SCDNR Infrared Imagery.
☐ or ☐ Other (Name & Date): Site visit photos inluded with the intial submittal.
☐ Previous determination(s). File no. and date of response letter: .
☐ Applicable/supporting case law: .
☐ Applicable/supporting scientific literature: .
☒ Other information (please specify): Horry County LIDAR / Hillshade GIS data .

B. ADDITIONAL COMMENTS TO SUPPORT JD: This form addresses a 54.25 acre tract that contains 19.10 (wetland 1 / 17.10 acres + wetland 2 / 2.00 = 19.10 acres) acres of jurisdictional freshwater wetlands and approximately 1354 linear feet of Waters of the United States. Limits of jurisdiction were established by the parameters set forth in the 1987 Wetland Delineation Manual and the 2010 Coastal Plain Supplement. Wetlands were saturated at the time of the site visit in contrast to the upland onsite that lacked the appropriate hydrology and soil chroma. Wetland 1 is bisected by the OHWM of a perennial RPW known as Mill Swamp which is a first order tributary that discharges directly into the Waccamaw River. Wetland 2 is bisected by a man-made features that discharges directly into Mill Swamp to the north of the site. Additionally, wetland 2 continues past the excavated feature and abuts the OHWM of Mill Swamp but for the purposes of this basis form is considered non-abutting.

Located onsite are two upland excavated non jurisdictional ditches and upland excavated pond that do not exhibit characteristics of a jurisdictional feature

This site is assessed on a single basis form.