APPROVED JURISDICTIONAL DETERMINATION FORM
U.S. Army Corps of Engineers

This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): January 15, 2019

B. DISTRICT OFFICE, FILE NUMBER, FILE NAME: CESAC-RDS; SAC-2018-00884; Jedburg Tract; Form 1 (isolated) of 4

C. PROJECT LOCATION AND BACKGROUND INFORMATION: A 166.660 acre site located at the intersection of Dawson Branch Road and Jedburg Road.

 State: South Carolina
 County/parish/borough: Berkeley and Dorchester Counties
 City: Jedburg
 Center coordinates of site (lat/long in degree decimal format): Lat. 33.082308° N, Long. -80.223052° W
 Universal Transverse Mercator: NAD83
 Name of nearest waterbody: Kelly Branch
 Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: None
 Name of watershed or Hydrologic Unit Code (HUC): 0305020105, Cypress Swamp
 Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request.
 Check if other sites (e.g., offsite mitigation sites, disposal sites, etc…) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY):

 - Office (Desk) Determination. Date:
 - Field Determination. Date(s): August 15, 2018

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION.

 There are no “navigable waters of the U.S.” within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area. [Required]

 - Waters subject to the ebb and flow of the tide.
 - Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.
 - Explain:

B. CWA SECTION 404 DETERMINATION OF JURISDICTION.

 There are no “waters of the U.S.” within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required]

 1. Waters of the U.S.
 a. Indicate presence of waters of U.S. in review area (check all that apply): 1
 - TNWs, including territorial seas
 - Wetlands adjacent to TNWs
 - Relatively permanent waters2 (RPWs) that flow directly or indirectly into TNWs
 - Non-RPWs that flow directly or indirectly into TNWs
 - Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 - Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 - Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 - Impoundments of jurisdictional waters
 - Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area:
 Non-wetland waters: linear feet: width (ft) and/or acres.
 Wetlands: acres.

 c. Limits (boundaries) of jurisdiction based on: Pick List, Pick List, Pick List
 Elevation of established OHWM (if known): .

 2. Non-regulated waters/wetlands (check if applicable): 3 [Including potentially jurisdictional features that upon assessment are NOT waters or wetlands]

1 Boxes checked below shall be supported by completing the appropriate sections in Section III below.
2 For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least “seasonally” (e.g., typically 3 months).
3 Supporting documentation is presented in Section III.F.
Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional.

Explain: The site contains 4 isolated wetlands: Non-Jurisdictional Wetlands A – 3.266 acres, Non-Jurisdictional Wetlands B – 0.985 acres, Non-Jurisdictional Wetlands C – 2.229 acres, and Non-Jurisdictional Wetlands D – 0.362 acre. In addition to utilizing remote resource tools (to include USGS Topographic map, LIDAR, infrared aerial photography, and historic aerial photographs), a field inspection was completed on August 15, 2018. Non-Jurisdictional Wetlands A, B, C, and D sit in depressional pockets within the landscape and are surrounded by uplands. The wetlands have no apparent physical, chemical, or biological connection to waters of the U.S., and have no apparent surface or shallow subsurface hydrologic connections to waters of the U.S. The wetlands also have no connection to interstate or foreign commerce. Therefore, Non-Jurisdictional Wetlands A, B, C, and D were determined to be isolated and non-jurisdictional.

SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

Identify TNW: .

Summarize rationale supporting determination: .

2. Wetland adjacent to TNW

Summarize rationale supporting conclusion that wetland is “adjacent”: .

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY):

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4.

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:
 Watershed size: Pick List ;
 Drainage area: Pick List
 Average annual rainfall: inches
 Average annual snowfall: inches

 (ii) Physical Characteristics:
 (a) Relationship with TNW:
 □ Tributary flows directly into TNW.
 □ Tributary flows through Pick List tributaries before entering TNW.

4 Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West.
Project waters are Pick List river miles from TNW.
Project waters are Pick List river miles from RPW.
Project waters are Pick List aerial (straight) miles from TNW.
Project waters are Pick List aerial (straight) miles from RPW.
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW:
Tributary stream order, if known:

(b) General Tributary Characteristics (check all that apply):

Tributary is:
- Natural
- Artificial (man-made). Explain:
- Manipulated (man-altered). Explain:

Tributary properties with respect to top of bank (estimate):
Average width: feet
Average depth: feet
Average side slopes: Pick List.

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Cobbles
- Gravel
- Muck
- Bedrock
- Vegetation. Type/% cover:
- Other. Explain:

Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain:
Presence of run/riffle/pool complexes. Explain:
Tributary geometry: Pick List. Explain:
Tributary gradient (approximate average slope): %

(c) Flow:
Tributary provides for: Pick List
Estimate average number of flow events in review area/year: Pick List
Describe flow regime:
Other information on duration and volume:

Surface flow is: Pick List. Characteristics:
Subsurface flow: Pick List. Explain findings:
- Dye (or other) test performed:

Tributary has (check all that apply):
- Bed and banks
- OHWM (check all indicators that apply):
- the presence of litter and debris
- changes in the character of soil
- destruction of terrestrial vegetation
- shelving
- the presence of wrack line
- vegetation matted down, bent, or absent
- sediment sorting
- leaf litter disturbed or washed away
- scour
- sediment deposition
- water staining
- multiple observed or predicted flow events
- abrupt change in plant community
- other (list):
- Discontinuous OHWM. Explain:

If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply):
- High Tide Line indicated by:
- Mean High Water Mark indicated by:
- oil or scum line along shore objects
- survey to available datum;
- fine shell or debris deposits (foreshore)
- physical markings;
- physical markings/characteristics
- vegetation lines/changes in vegetation types.
- tidal gauges

5 Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW.
6 A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody’s flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break.
7 Ibid.
(iii) Chemical Characteristics:
Characterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.).
Explain: .
Identify specific pollutants, if known: .

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian corridor. Characteristics (type, average width): .
- Habitat for:
 - Federally Listed species. Explain findings: .
 - Fish/spawn areas. Explain findings: .
 - Other environmentally-sensitive species. Explain findings: .
 - Aquatic/wildlife diversity. Explain findings: .

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics:
Properties:
- Wetland size: acres
- Wetland type. Explain: .
Project wetlands cross or serve as state boundaries. Explain: .

(b) General Flow Relationship with Non-TNW:
Flow is: Pick List. Explain: .
Surface flow is: Pick List
Characteristics:
- Dye (or other) test performed: .

Subsurface flow: Pick List. Explain findings: .
- Dye (or other) test performed: .

(c) Wetland Adjacency Determination with Non-TNW:
- Directly abutting
- Not directly abutting
 - Discrete wetland hydrologic connection. Explain: .
 - Separated by berm/barrier. Explain: .

(d) Proximity (Relationship) to TNW
Project wetlands are Pick List river miles from TNW.
Project waters are Pick List aerial (straight) miles from TNW.
Flow is from: Pick List.
Estimate approximate location of wetland as within the Pick List floodplain.

(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain: .
Identify specific pollutants, if known: .

(iii) Biological Characteristics. Wetland supports (check all that apply):
- Riparian buffer. Characteristics (type, average width): .
- Vegetation type/percent cover. Explain: .
- Habitat for:
 - Federally Listed species. Explain findings: .
 - Fish/spawn areas. Explain findings: .
 - Other environmentally-sensitive species. Explain findings: .
 - Aquatic/wildlife diversity. Explain findings: .

3. Characteristics of all wetlands adjacent to the tributary (if any)
All wetland(s) being considered in the cumulative analysis: Pick List
Approximately () acres in total are being considered in the cumulative analysis.
For each wetland, specify the following:

<table>
<thead>
<tr>
<th>Directly abuts? (Y/N)</th>
<th>Size (in acres)</th>
<th>Directly abuts? (Y/N)</th>
<th>Size (in acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Summarize overall biological, chemical, and physical functions being performed:

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g., between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below:

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary itself; then go to Section III.D: .

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands; then go to Section III.D: .

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands; then go to Section III.D: .

Documentation for the Record only: Significant nexus findings for seasonal RPWs and/or wetlands abutting seasonal RPWs: .

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY):

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs: linear feet width (ft), Or, acres.
 - Wetlands adjacent to TNWs: acres.

2. RPWs that flow directly or indirectly into TNWs.
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial: .
☐ Tributaries of TNW where tributaries have continuous flow “seasonally” (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

Provide estimates for jurisdictional waters in the review area (check all that apply):
☐ Tributary waters: linear feet width (ft).
☐ Other non-wetland waters: acres.
Identify type(s) of waters:

3. Non-RPWs that flow directly or indirectly into TNWs.
☐ Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional waters within the review area (check all that apply):
☐ Tributary waters: linear feet width (ft).
☐ Other non-wetland waters: acres.
Identify type(s) of waters:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
☐ Wetlands directly abutting RPW and thus are jurisdictional as adjacent wetlands.
☐ Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW:

Provide acreage estimates for jurisdictional wetlands in the review area: acres.

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs.
☐ Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetlands in the review area: acres.

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
☐ Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetlands in the review area: acres.

7. Impoundments of jurisdictional waters.9
As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional.
☐ Demonstrate that impoundment was created from “waters of the U.S.,” or
☐ Demonstrate that water meets the criteria for one of the categories presented above (1-6), or
☐ Demonstrate that water is isolated with a nexus to commerce (see E below).

Explain:

E. ISOLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY SUCH WATERS (CHECK ALL THAT APPLY):10
☐ which are or could be used by interstate or foreign travelers for recreational or other purposes.
☐ from which fish or shellfish are or could be taken and sold in interstate or foreign commerce.
☐ which are or could be used for industrial purposes by industries in interstate commerce.
☐ Interstate isolated waters. Explain:
☐ Other factors. Explain:

8See Footnote # 3.
9 To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook.
10 Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos.
Identify water body and summarize rationale supporting determination:

Provide estimates for jurisdictional waters in the review area (check all that apply):
- [] Tributary waters: linear feet width (ft).
- [] Other non-wetland waters: acres.
- [] Identify type(s) of waters:
- [] Wetlands: acres.

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY):
- [] If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements.
- [] Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce.
- [] Prior to the Jan 2001 Supreme Court decision in “SWANCC,” the review area would have been regulated based solely on the “Migratory Bird Rule” (MBR).
- [] Waters do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction. Explain:
- [] Other: (explain, if not covered above):

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):
- [] Non-wetland waters (i.e., rivers, streams): linear feet width (ft).
- [] Lakes/ponds: acres.
- [] Other non-wetland waters: acres. List type of aquatic resource:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):
- [] Non-wetland waters (i.e., rivers, streams): linear feet width (ft).
- [] Lakes/ponds: acres.
- [] Other non-wetland waters: acres. List type of aquatic resource:
- [] Wetlands: acres.

SECTION IV: DATA SOURCES.

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):
- [] Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: Survey plat entitled “Wetland Delineation for TMS No: 206-00-00-002, 40.057 Acres, TMS 207-00-01-021, 141.844 Acres and TMS 207-00-01-010, 166.660 Acres, Located in Berkeley County, All Property of North Charleston Lands Corp., Located Near Jedburg, Dorchester and Berkeley Counties, South Carolina” Sheet 1-8 of 8 and dated September 21, 2018, prepared by Parker Land Surveying, LLC.
- [] Data sheets prepared/submitted by or on behalf of the applicant/consultant.
- [] Office concurs with data sheets/delineation report.
- [] Office does not concur with data sheets/delineation report.
- [] Data sheets prepared by the Corps:
- [] Corps navigable waters’ study:
- [] U.S. Geological Survey Hydrologic Atlas:
- [] USGS NHD data.
- [] USGS 8 and 12 digit HUC maps.
- [] U.S. Geological Survey map(s). Cite scale & quad name:
- [] USDA Natural Resources Conservation Service Soil Survey. Citation:
- [] National wetlands inventory map(s). Cite name:
- [] State/Local wetland inventory map(s):
- [] FEMA/FIRM maps:
- [] 100-year Floodplain Elevation is: (National Geodectic Vertical Datum of 1929)
- [] Photographs: [] Aerial (Name & Date):
- [] Previous determination(s). File no. and date of response letter:
- [] Applicable/supporting case law:
- [] Applicable/supporting scientific literature:
- [] Other information (please specify): JD Request Package received in our office on May 30, 2018.

B. ADDITIONAL COMMENTS TO SUPPORT JD: Based on the above information it has been determined by this office that Non-Jurisdictional Wetlands A, B, C, and D totaling 6.842 acres within the site are isolated, non-jurisdictional waters that are not subject to regulation under Section 404 of the Clean Water Act or Section 10 of the Rivers and Harbors Act.
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION
A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): January 15, 2019

B. DISTRICT OFFICE, FILE NUMBER, FILE NAME: CESAC-RDS; SAC-2018-00884; Jedburg Tract; Form 2 (Cypress Swamp) of 4

C. PROJECT LOCATION AND BACKGROUND INFORMATION: A 166.660 acre site located at the intersection of Dawson Branch Road and Jedburg Road.

 State: South Carolina County/parish/borough: Berkeley County City: Jedburg
 Center coordinates of site (lat/long in degree decimal format): Lat. 33.082308° N, Long. -80.223052° W
 Universal Transverse Mercator: NAD83
 Name of nearest waterbody: Cypress Swamp
 Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Ashley River
 Name of watershed or Hydrologic Unit Code (HUC): 0305020105, Cypress Swamp
 Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request.
 Check if other sites (e.g., offsite mitigation sites, disposal sites, etc…) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY):
 ☒ Office (Desk) Determination. Date: Field Determination. Date(s): August 15, 2018

SECTION II: SUMMARY OF FINDINGS
A. RHA SECTION 10 DETERMINATION OF JURISDICTION.

 There are no “navigable waters of the U.S.” within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area. [Required]
 Waters subject to the ebb and flow of the tide.
 Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce. Explain: .

B. CWA SECTION 404 DETERMINATION OF JURISDICTION.

 There are “waters of the U.S.” within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required]

 1. Waters of the U.S.
 a. Indicate presence of waters of U.S. in review area (check all that apply): 1
 ☐ TNWs, including territorial seas
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters2 (RPWs) that flow directly or indirectly into TNWs
 ☒ Non-RPWs that flow directly or indirectly into TNWs
 ☒ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☒ Impoundments of jurisdictional waters
 ☒ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area:
 Non-wetland waters: linear feet: width (ft) and/or acres.
 Wetlands: Jurisdictional Wetlands F - 0.269 acres.

 c. Limits (boundaries) of jurisdiction based on: 1987 Delineation Manual
 Elevation of established OHWM (if known): .

 2. Non-regulated waters/wetlands (check if applicable):3 [Including potentially jurisdictional features that upon assessment are NOT waters or wetlands]

1 Boxes checked below shall be supported by completing the appropriate sections in Section III below.
2 For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least “seasonally” (e.g., typically 3 months).
3 Supporting documentation is presented in Section III.F.
Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional. Explain:

SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
Identify TNW: .
Summarize rationale supporting determination: .

2. Wetland adjacent to TNW
Summarize rationale supporting conclusion that wetland is “adjacent”: .

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY):

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4.

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

(i) General Area Conditions:
Watershed size:
Drainage area:
Average annual rainfall: inches
Average annual snowfall: inches

(ii) Physical Characteristics:
(a) Relationship with TNW:
☐ Tributary flows directly into TNW.
☐ Tributary flows through Pick List tributaries before entering TNW.
Project waters are Pick List river miles from TNW.
Project waters are Pick List river miles from RPW.
Project waters are Pick List aerial (straight) miles from TNW.
Project waters are Pick List aerial (straight) miles from RPW.
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW:

4 Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West.
5 Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW.
Tributary stream order, if known:

(b) General Tributary Characteristics (check all that apply):

Tributary is:
- □ Natural
- □ Artificial (man-made). Explain:
- □ Manipulated (man-altered). Explain:

Tributary properties with respect to top of bank (estimate):
- Average width: feet
- Average depth: feet
- Average side slopes:

Primary tributary substrate composition (check all that apply):
- □ Silts
- □ Sands
- □ Concrete
- □ Cobble
- □ Gravel
- □ Muck
- □ Bedrock
- □ Vegetation. Type/% cover:
- □ Other. Explain:

Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain:
- Presence of run/riffle/pool complexes. Explain:
- Tributary geometry:
- Tributary gradient (approximate average slope):

(c) Flow:
- Tributary provides for:
- Estimate average number of flow events in review area/year:
- Describe flow regime:
- Other information on duration and volume:
- Surface flow is: Characteristics:
- Subsurface flow: Explain findings:
- □ Dye (or other) test performed:

Tributary has (check all that apply):
- □ Bed and banks
- □ OHWM* (check all indicators that apply):
 - clear, natural line impressed on the bank
 - changes in the character of soil
 - shelving
 - vegetation matted down, bent, or absent
 - leaf litter disturbed or washed away
 - sediment deposition
 - water staining
 - other (list):
- □ Discontinuous OHWM.7 Explain:

If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply):
- □ High Tide Line indicated by:
- □ Mean High Water Mark indicated by:
 - oil or scum line along shore objects
 - fine shell or debris deposits (foreshore)
 - physical markings/characteristics
 - tidal gauges
 - other (list):

(iii) Chemical Characteristics:
- Characterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.).
- Explain:
- Identify specific pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):
- □ Riparian corridor. Characteristics (type, average width):
- □ Wetland fringe. Characteristics:
- □ Habitat for:
- □ Federally Listed species. Explain findings:

*A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody’s flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break.

7Ibid.
2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:
 (a) General Wetland Characteristics:
 Properties:
 Wetland size: __________ acres
 Wetland type. Explain: __________
 Wetland quality. Explain: __________
 Project wetlands cross or serve as state boundaries. Explain: __________

 (b) General Flow Relationship with Non-TNW:
 Flow is: Pick List. Explain: __________
 Surface flow is: Pick List. Characteristics: __________
 Subsurface flow: Pick List. Explain findings: __________
 Dye (or other) test performed: __________

 (c) Wetland Adjacency Determination with Non-TNW:
 Directly abutting __________
 Not directly abutting __________
 Discrete wetland hydrologic connection. Explain: __________
 Ecological connection. Explain: __________
 Separated by berm/barrier. Explain: __________

 (d) Proximity (Relationship) to TNW
 Project wetlands are Pick List river miles from TNW.
 Project waters are Pick List aerial (straight) miles from TNW.
 Flow is from: Pick List.
 Estimate approximate location of wetland as within the Pick List floodplain.

(ii) Chemical Characteristics:
 Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain: __________
 Identify specific pollutants, if known: __________

(iii) Biological Characteristics. Wetland supports (check all that apply):
 Riparian buffer. Characteristics (type, average width): __________
 Vegetation type/percent cover. Explain: __________
 Habitat for: __________
 Federally Listed species. Explain findings: __________
 Fish/spawn areas. Explain findings: __________
 Other environmentally-sensitive species. Explain findings: __________
 Aquatic/wildlife diversity. Explain findings: __________

3. Characteristics of all wetlands adjacent to the tributary (if any)
 All wetland(s) being considered in the cumulative analysis: Pick List
 Approximately (_________) acres in total are being considered in the cumulative analysis.
For each wetland, specify the following:

<table>
<thead>
<tr>
<th>Directly abuts? (Y/N)</th>
<th>Size (in acres)</th>
<th>Directly abuts? (Y/N)</th>
<th>Size (in acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Summarize overall biological, chemical and physical functions being performed: .

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below:

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D: .

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: .

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: .

Documentation for the Record only: Significant nexus findings for seasonal RPWs and/or wetlands abutting seasonal RPWs: .

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY):

1. **TNWs and Adjacent Wetlands.** Check all that apply and provide size estimates in review area:
 - TNWs: linear feet width (ft), Or, acres.
 - Wetlands adjacent to TNWs: acres.

2. **RPWs that flow directly or indirectly into TNWs.**
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial: The un-named RPW appears to have perennial flow based on the USGS National Hydrology Dataset which shows the RPW is at least a second order tributary receiving flow from the other side I-26, from the road side of I-26, and from Jurisdictional Wetlands F on-site. The RPW can also be seen as a defined channel on
LIDAR and in aerial imagery. USGS Stream Stats shows the RPW has a 422.4 acre drainage area. In addition to the abutting Jurisdictional Wetlands F, the RPW likely has other abutting wetlands based on its position in the landscape next to the wetlands surrounding Cypress Swamp. These abutting wetlands likely have a subsurface hydrological connection. Therefore, the RPW likely has a subsurface hydrological connection contributing to its perennial flow. The RPW flows into Cypress Swamp which flows into Ashley River a TNW.

☐ Tributaries of TNW where tributaries have continuous flow “seasonally” (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: .

Provide estimates for jurisdictional waters in the review area (check all that apply):
☐ Tributary waters: linear feet width (ft).
☐ Other non-wetland waters: acres.
Identify type(s) of waters: .

3. Non-RPWs that flow directly or indirectly into TNWs.
☐ Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional waters within the review area (check all that apply):
☐ Tributary waters: linear feet width (ft).
☐ Other non-wetland waters: acres.
Identify type(s) of waters: .

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
☒ Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
☒ Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: Jurisdictional Wetlands F extends outside the boundary of the site and flows into the RPW. Jurisdictional Wetlands F shares a boundary and surrounds the RPW. This direct connection can be seen on LIDAR, USGS topographic maps, USGS NHD, and infrared aerial photography.

☐ Wetlands directly abutting an RPW where tributaries typically flow “seasonally.” Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: .

Provide acreage estimates for jurisdictional wetlands in the review area: acres.

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs.
☐ Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetlands in the review area: acres.

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
☐ Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetlands in the review area: acres.

7. Impoundments of jurisdictional waters.☐ As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional.
☐ Demonstrate that impoundment was created from “waters of the U.S.,” or
☐ Demonstrate that water meets the criteria for one of the categories presented above (1-6), or
☐ Demonstrate that water is isolated with a nexus to commerce (see E below).

Explain:

E. ISOLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY SUCH WATERS (CHECK ALL THAT APPLY):

8See Footnote # 3.
9 To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook.
Identify water body and summarize rationale supporting determination:

Provide estimates for jurisdictional waters in the review area (check all that apply):
- Tributary waters: linear feet width (ft).
- Other non-wetland waters: acres.
- Identify type(s) of waters:
- Wetlands: acres.

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY):
- If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements.
- Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce.
 - Prior to the Jan 2001 Supreme Court decision in “SWANCC,” the review area would have been regulated based solely on the “Migratory Bird Rule” (MBR).
 - Waters do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction. Explain: .
 - Other: (explain, if not covered above): .

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):
- Non-wetland waters (i.e., rivers, streams): linear feet width (ft).
- Lakes/ponds: acres.
- Wetlands: acres.

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):
- Non-wetland waters (i.e., rivers, streams): linear feet width (ft).
- Lakes/ponds: acres.
- Wetlands: acres.

SECTION IV: DATA SOURCES.

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):
- Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: Survey plat entitled “Wetland Delineation for TMS No: 206-00-00-002, 40.057 Acres, TMS 207-00-01-021, 141.844 Acres and TMS 207-00-01-010, 166.660 Acres, Located in Berkeley County, All Property of North Charleston Lands Corp., Located Near Jedburg, Dorchester and Berkeley Counties, South Carolina” Sheet 1-8 of 8 and dated September 21, 2018, prepared by Parker Land Surveying, LLC.
- Data sheets prepared/submitted by or on behalf of the applicant/consultant: .
- Data sheets concurs with data sheets/delineation report: .
- Data sheets prepared by the Corps: .
- Corps navigable waters’ study: .
- USGS NHD data: .
- USGS 8 and 12 digit HUC maps: .
- U.S. Geological Survey map(s). Cite scale & quad name: .
- USDA Natural Resources Conservation Service Soil Survey. Citation: .
- National wetlands inventory map(s). Cite name: .
- State/Local wetland inventory map(s): .
- FEMA/FIRM maps: .
- 100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)
- Photographs: Aerial (Name & Date): .
 or Other (Name & Date): .
B. ADDITIONAL COMMENTS TO SUPPORT JD: Based on the above information it has been determined by this office that Jurisdictional Wetlands F (0.269 acres) is a water of the U.S. subject to regulation under Section 404 of the Clean Water Act.
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): January 15, 2019

B. DISTRICT OFFICE, FILE NUMBER, FILE NAME: CESAC-RDS; SAC-2018-00884; Jedburg Tract; Form 3 (Dawson Branch) of 4

C. PROJECT LOCATION AND BACKGROUND INFORMATION: A 166.660 acre site located at the intersection of Dawson Branch Road and Jedburg Road.
 - State: South Carolina
 - County/parish/borough: Berkeley County
 - City: Jedburg
 - Center coordinates of site (lat/long in degree decimal format): Lat. 33.082308° N, Long. -80.223052° W
 - Universal Transverse Mercator: NAD83
 - Name of nearest waterbody: Dawson Branch
 - Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Ashley River
 - Name of watershed or Hydrologic Unit Code (HUC): 0305020105, Cypress Swamp
 - Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request.
 - Check if other sites (e.g., offsite mitigation sites, disposal sites, etc…) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY):
 - Office (Desk) Determination. Date:
 - Field Determination. Date(s): August 15, 2018

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION.

There are no “navigable waters of the U.S.” within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area. [Required]

- Waters subject to the ebb and flow of the tide.
- Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

- Explain:

B. CWA SECTION 404 DETERMINATION OF JURISDICTION.

There are “waters of the U.S.” within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required]

1. Waters of the U.S.
 a. Indicate presence of waters of U.S. in review area (check all that apply): 1
 - TNWs, including territorial seas
 - Wetlands adjacent to TNWs
 - Relatively permanent waters 2 (RPWs) that flow directly or indirectly into TNWs (Jurisdictional Tributary A)
 - Non-RPWs that flow directly or indirectly into TNWs
 - Wetlands directly abutting RPWs that flow directly or indirectly into TNWs (Jurisdictional Wetlands A, C, and D)
 - Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs (Jurisdictional Wetlands B and E)
 - Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 - Impoundments of jurisdictional waters
 - Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area:
 - Non-wetland waters: Jurisdictional Tributary A - 6,570.2 linear feet: width (ft) and/or 2.09 acres.
 - Wetlands: 26.692 acres
 - Jurisdictional Wetlands A – 6.978 acres
 - Jurisdictional Wetlands B – 0.224 acres
 - Jurisdictional Wetlands C – 5.109 acres
 - Jurisdictional Wetlands D - 14.275 acres
 - Jurisdictional Wetlands E - 0.106 acres

1 Boxes checked below shall be supported by completing the appropriate sections in Section III below.
2 For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least “seasonally” (e.g., typically 3 months).
c. **Limits (boundaries) of jurisdiction** based on: Established by OHWM and 1987 Delineation Manual
 Elevation of established OHWM (if known): .

2. **Non-regulated waters/wetlands (check if applicable):**
 - Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional.

 SECTION III: CWA ANALYSIS

A. **TNWs AND WETLANDS ADJACENT TO TNWs**

 The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. **TNW**
 - Identify TNW: .
 - Summarize rationale supporting determination: .

2. **Wetland adjacent to TNW**
 - Summarize rationale supporting conclusion that wetland is “adjacent”: .

B. **CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY):**

 This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under *Rapanos* have been met.

 The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4.

 A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

 If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. **Characteristics of non-TNWs that flow directly or indirectly into TNW**

 (i) **General Area Conditions:**
 - Watershed size: 844.8 acres
 - Drainage area: 844.8 acres
 - Average annual rainfall: 50 inches
 - Average annual snowfall: inches

 (ii) **Physical Characteristics:**
 (a) **Relationship with TNW:**
 - ✗ Tributary flows directly into TNW.
 - ✗ Tributary flows through 2 tributaries before entering TNW.
 - Project waters are 15-20 river miles from TNW.

3 Supporting documentation is presented in Section III.F.
4 Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West.
Project waters are 1 (or less) river miles from RPW.
Project waters are 10-15 aerial (straight) miles from TNW.
Project waters are 1 (or less) aerial (straight) miles from RPW.
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW:\(^5\): Dawson Branch flows into Cypress Swamp that flows into the Ashley River a TNW.
Tributary stream order, if known:

(b) **General Tributary Characteristics (check all that apply):**

<table>
<thead>
<tr>
<th>Tributary is:</th>
</tr>
</thead>
<tbody>
<tr>
<td>[x] Natural</td>
</tr>
</tbody>
</table>

Tributary properties with respect to top of bank (estimate):

- Average width: 10 feet
- Average depth: 2 feet
- Average side slopes: 2%

Primary tributary substrate composition (check all that apply):

- [x] Silts
- [x] Sands
- [] Concrete
- [] Cobbles
- [] Gravel
- [] Muck
- [] Bedrock
- [] Vegetation. Type/% cover:
- [] Other. Explain: .

Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain: **Stable** Presence of run/riffle/pool complexes. Explain: **No riffle and pools were noted during the site visit.**
Tributary geometry: **Discrete and Confined**
Tributary gradient (approximate average slope): 2%

(c) Flow:

Tributary provides for: **Perennial flow**
Estimate average number of flow events in review area/year:
- [] Describe flow regime: **20 (or greater)**
Other information on duration and volume:
Surface flow is: **Confined**
Characteristics: **Dawson Branch has a confined bed and bank.**

Subsurface flow: **Yes**
Explain findings: **Dawson Branch is clearly a perennial tributary based on the tributary being a named stream on the USGS topographic map and based on the size of the tributary observed in the field. Perennial streams have subsurface flow.**
- [] Dye (or other) test performed:

Tributary has (check all that apply):

- [x] Bed and banks
- [x] OHWM\(^6\) (check all indicators that apply):
 - [x] the presence of litter and debris
 - [x] destruction of terrestrial vegetation
 - [x] the presence of wrack line
 - [x] sediment sorting
 - [x] multiple observed or predicted flow events
 - [x] abrupt change in plant community
- [] other (list):
- [] Discontinuous OHWM.\(^7\) Explain: .

If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply):

- [] High Tide Line indicated by:
 - [] oil or scum line along shore objects
 - [] fine shell or debris deposits (foreshore)
 - [] physical markings/characteristics
 - [] tidal gauges
 - [] other (list):
- [] Mean High Water Mark indicated by:
 - [] survey to available datum;
 - [] physical markings;
 - [] vegetation lines/changes in vegetation types.

\(^5\) Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW.

\(^6\) A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody’s flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break.

\(^7\) Ibid.
(iii) Chemical Characteristics:
Characterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.).

Explain: The water color was clear during the site visit.
Identify specific pollutants, if known: .

(iv) Biological Characteristics. Channel supports (check all that apply):

✔ Riparian corridor. Characteristics (type, average width): Dawson Branch has at least a 50’ forested riparian area along the majority of its length.

✔ Wetland fringe. Characteristics: Dawson Branch is estimated to have approximately 167.26 acres of wetland fringe along its length. This estimate is based on infrared aerial photograph and USGS topographic map.

☐ Habitat for:
☐ Federally Listed species. Explain findings: .
☐ Fish/spawn areas. Explain findings: .
☐ Other environmentally-sensitive species. Explain findings: .
☒ Aquatic/wildlife diversity. Explain findings: Dawson Branch and its riparian area provide habitat for terrestrial and aquatic species.

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW (onsite wetlands)

(i) Physical Characteristics:

(a) General Wetland Characteristics:
Properties:
Wetland size:
Jurisdictional Wetlands A – 6.978 acres
Jurisdictional Wetlands B – 0.224 acres
Jurisdictional Wetlands C – 5.109 acres
Jurisdictional Wetlands D - 14.275 acres
Jurisdictional Wetlands E - 0.106 acres
Total – 26.692 acres

Wetland type. Explain: Forested
Wetland quality. Explain: The wetlands are high quality with minimal human disturbances and minimal invasive species.

Project wetlands cross or serve as state boundaries. Explain: .

(b) General Flow Relationship with Non-TNW:
Flow is: Perennial flow. Explain: The wetlands flow into Dawson Branch which has perennial flow.

Surface flow is: Discrete and confined
Characteristics: Dawson Branch has a bed and bank and OHWM.

Subsurface flow: Yes. Explain findings: Perennial streams have subsurface hydrological connection.
☐ Dye (or other) test performed: .

(c) Wetland Adjacency Determination with Non-TNW:

✔ Directly abutting Jurisdictional Wetlands A – 6.978 acres
Jurisdictional Wetlands C – 5.109 acres
Jurisdictional Wetlands D - 14.275 acres
Total – 26.362 acres

☒ Not directly abutting Jurisdictional Wetlands E - 0.106 acres
Jurisdictional Wetlands B – 0.224 acres
Total – 0.33 acres

☐ Discrete wetland hydrologic connection. Explain: .
☒ Ecological connection. Explain: See Section III.B.3 below.

☒ Separated by berm/barrier. Explain: The wetlands are both less than approximately 10 feet away from the abutting wetlands they flow into. Jurisdictional Wetlands E is separated from abutting Jurisdictional Wetlands D by a debris pile and disturbed compacted soil. Jurisdictional Wetlands B is separated from Jurisdictional Wetlands C and A by a power line easement that has disturbed the area.

(d) Proximity (Relationship) to TNW
Project wetlands are 15-20 river miles from TNW.
Project waters are 10-15 aerial (straight) miles from TNW.
Flow is from: Wetland to navigable waters.
Estimate approximate location of wetland as within the 2-year or less floodplain.

(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain: The water color was clear during the site visit.
Identify specific pollutants, if known:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian buffer. Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

☒ Habitat for:

☐ Federally Listed species. Explain findings:

☐ Fish/spawn areas. Explain findings:

☐ Other environmentally-sensitive species. Explain findings:

☒ Aquatic/wildlife diversity. Explain findings: The wetlands provide habitat for both aquatic and terrestrial species.

3. Characteristics of all wetlands adjacent to the tributary (if any) (all wetlands adjacent to that tributary, both onsite and offsite)

All wetland(s) being considered in the cumulative analysis: 2

Approximately 167.59 acres in total are being considered in the cumulative analysis.

For each wetland, specify the following:

<table>
<thead>
<tr>
<th>Directly abuts? (Y/N)</th>
<th>Size (in acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>167.26 acres of wetlands are estimated to be directly abutting Dawson Branch within Dawson Branch’s 844.8 drainage area above the project site. The drainage area includes the project site, and the 167.26 acres of wetlands includes the 26.362 acres of wetlands (Wetlands A, C, and D) directly abutting a RPW on site.</td>
</tr>
<tr>
<td>N</td>
<td>0.33 acres consisting of Jurisdictional Wetlands E and B</td>
</tr>
</tbody>
</table>

Summarize overall biological, chemical and physical functions being performed: Biological - The wetlands are mostly forested. As such, a broad variety of biological functions are being performed which include providing breeding grounds and shelter for aquatic species, foraging areas for wetland dependent species, and in particular, floodplain wetlands provide important spawning areas for species that inhabit the main channel as adults. These wetlands are essential in providing organic carbon in the form of their collective primary productivity to downstream waters, resulting in the nourishment of the downstream food web. Chemical – These wetlands are providing the important collective functions of removing excess nutrients which are contributed by runoff from the surrounding uplands and developed areas, reducing nitrogen and phosphorus loading downstream, and effectively preventing oxygen depletion that can result from eutrophication. Physical – The wetlands are performing flow maintenance functions, including retaining runoff inflow and storing flood water temporarily. Flow maintenance results in the reduction of downstream peak flows (discharge and volume), helping to maintain seasonal flow volumes.

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below:

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D:

Page 5 of 8
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: Jurisdictional Wetlands E - 0.106 acres and Jurisdictional Wetlands B - 0.224 acres totaling 0.33 acres are adjacent to RPW, specifically the Jurisdictional Wetlands E and B are adjacent to wetlands abutting Dawson Branch a perennial RPW. Jurisdictional Wetlands E and B are both less than approximately 10 feet away from the abutting wetlands they flow into. Jurisdictional Wetlands E is separated from abutting Jurisdictional Wetlands D by a debris pile and disturbed compacted soil. Jurisdictional Wetlands B is separated from Jurisdictional Wetlands C and A by a power line easement that has disturbed the area. It is clear that Jurisdictional Wetlands E and B were once a part of the larger abutting wetlands system but human activity has created a small upland area separating them. However, it is also clear based on topography that the Jurisdictional Wetlands E and B flow into the wetland system abutting Dawson Branch. Based on a jurisdictional determination NWP-2007-428, the US EPA determined on February 25, 2008, that wetlands separated by an artificial barrier does not sever the areas from functioning as one wetland.

It is also clear that Jurisdictional Wetlands E and B have a biological, chemical, and physical connection to downstream waters. Biological - The wetlands are mostly forested. As such, a broad variety of biological functions are being performed which include providing breeding grounds and shelter for aquatic species, foraging areas for wetland dependent species, and in particular, floodplain wetlands provide important spawning areas for species that inhabit the main channel as adults. These wetlands are essential in providing organic carbon in the form of their collective primary productivity to downstream waters, resulting in the nourishment of the downstream food web. Chemical – These wetlands are providing the important collective functions of removing excess nutrients which are contributed by runoff from the surrounding uplands and developed areas, reducing nitrogen and phosphorus loading downstream, and effectively preventing oxygen depletion that can result from eutrophication. Physical – The wetlands are performing flow maintenance functions, including retaining runoff inflow and storing flood water temporarily. Flow maintenance results in the reduction of downstream peak flows (discharge and volume), helping to maintain seasonal flow volumes.

According to the SCDHEC Watershed Assessment information available online, this watershed (Watershed 03050201-05 (formerly 03050202-010, and a portion of -020) is located in Berkeley and Dorchester Counties and consists primarily of Cypress Swamp and its tributaries. The watershed occupies 139,162 acres of the Lower Coastal Plain region of South Carolina. Land use/land cover in the watershed includes: 52.5% forested land, 25.3% forested wetland, 14.4% agricultural land, 7.1% urban land, 0.4% nonforested wetland, 0.2% water, and 0.1% barren land. Monitoring station (CSTL-078) is located immediately downstream from the project site. At this monitoring location aquatic life uses are fully supported; however, there is a significant increasing trend in five-day biological oxygen demand. Although dissolved oxygen excursions occurred, they were typical of values seen in blackwater systems and were considered natural, not standard violations. There is a significant increasing trend in pH. Recreational uses are partially supported due to fecal coliform bacteria excursions.

Documentation for the Record only: Significant nexus findings for seasonal RPWs and/or wetlands abutting seasonal RPWs: .

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY):

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs: linear feet width (ft), Or, acres.
 - Wetlands adjacent to TNWs: acres.

2. RPWs that flow directly or indirectly into TNWs.
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial: Jurisdictional Tributary A, also known as Dawson Branch, is clearly a perennial tributary of a TNW. Jurisdictional Tributary A is a named blue line stream on the USGS topographic map. Based on the site visit the size of Dawson Branch near the site is approximately 10 feet wide and 2 feet deep. The large size of Dawson Branch demonstrates the continuous flow of this perennial tributary. Dawson Branch flows into Cypress Swamp that flows into the Ashley River a TNW.

 - Tributaries of TNW where tributaries have continuous flow “seasonally” (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: .

 Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters: linear feet width (ft).
 - Other non-wetland waters: acres.
 - Identify type(s) of waters: .

Page 6 of 8
3. Non-RPWs\(^8\) that flow directly or indirectly into TNWs.

- Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional waters within the review area (check all that apply):

- Tributary waters: linear feet width (ft).
- Other non-wetland waters: acres.

Identify type(s) of waters:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- Wetlands directly abutting an RPW and thus are jurisdictional as adjacent wetlands.
- Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: Jurisdictional Wetlands A, C, and D directly flow into the RPW (Dawson Branch), share a boundary with the RPW, and surround the RPW. This direct connection can be seen on the delineation plat.

Wetlands directly abutting an RPW where tributaries typically flow “seasonally.” Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW:

Provide acreage estimates for jurisdictional wetlands in the review area: acres.

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs.

- Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetlands in the review area: 0.33 acres. **Jurisdictional Wetlands E and B.**

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.

- Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetlands in the review area: acres.

7. Impoundments of jurisdictional waters.\(^9\)

As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional.

- Demonstrate that impoundment was created from “waters of the U.S.,” or
- Demonstrate that water meets the criteria for one of the categories presented above (1-6), or
- Demonstrate that water is isolated with a nexus to commerce (see E below).

Explain:

\[\text{E. ISOLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY SUCH WATERS (CHECK ALL THAT APPLY):}^{10}\]

- which are or could be used by interstate or foreign travelers for recreational or other purposes.
- from which fish or shellfish are or could be taken and sold in interstate or foreign commerce.
- which are or could be used for industrial purposes by industries in interstate commerce.
- Interstate isolated waters. Explain:
- Other factors. Explain:

Identify water body and summarize rationale supporting determination:

Provide estimates for jurisdictional waters in the review area (check all that apply):

- Tributary waters: linear feet width (ft).
- Other non-wetland waters: acres.

Identify type(s) of waters:

- Wetlands: acres.

\(^8\)See Footnote # 3.

\(^9\) To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook.

\(^{10}\) Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos.
F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY):

- If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements.
- Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce.
- Prior to the Jan 2001 Supreme Court decision in “SWANCC,” the review area would have been regulated based solely on the “Migratory Bird Rule” (MBR).
- Waters do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction. Explain: .
- Other: (explain, if not covered above): .

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non-wetland waters (i.e., rivers, streams): linear feet width (ft).
- Lakes/ponds: acres.
- Other non-wetland waters: acres. List type of aquatic resource: .
- Wetlands: acres.

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters (i.e., rivers, streams): linear feet, width (ft).
- Lakes/ponds: acres.
- Other non-wetland waters: acres. List type of aquatic resource: .
- Wetlands: acres.

SECTION IV: DATA SOURCES.

A. SUPPORTING DATA. Data reviewed for JD (check all that apply) - checked items shall be included in case file and, where checked and requested, appropriately reference sources below:

- Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: Survey plat entitled “Wetland Delineation for TMS No: 206-00-00-002, 40.057 Acres, TMS 207-00-01-021, 141.844 Acres and TMS 207-00-01-010, 166.660 Acres, Located in Berkeley County, All Property of North Charleston Lands Corp., Located Near Jedburg, Dorchester and Berkeley Counties, South Carolina” Sheet 1-8 of 8 and dated September 21, 2018, prepared by Parker Land Surveying, LLC.
- Data sheets prepared/submitted by or on behalf of the applicant/consultant. Office concurs with data sheets/delineation report.
- Office does not concur with data sheets/delineation report.
- Data sheets prepared by the Corps: .
- Corps navigable waters’ study: .
- USGS NHD data: .
- USGS 8 and 12 digit HUC maps: .
- U.S. Geological Survey map(s). Cite scale & quad name: .
- USDA Natural Resources Conservation Service Soil Survey. Citation: .
- National wetlands inventory map(s). Cite name: .
- State/Local wetland inventory map(s): .
- FEMA/FIRM maps: .
- 100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)
- Photographs: Aerial (Name & Date): .
- or Other (Name & Date): .
- Previous determination(s). File no. and date of response letter: .
- Applicable/supporting case law: .
- Applicable/supporting scientific literature: .
- Other information (please specify): JD Request Package received in our office on May 30, 2018.

B. ADDITIONAL COMMENTS TO SUPPORT JD: Based on the above information it has been determined by this office that Jurisdictional Tributary A (6,570.2 linear feet: width (ft) and/or 2.09 acres), Jurisdictional Wetlands A (6.978 acres), Jurisdictional Wetlands B (0.224 acres), Jurisdictional Wetlands C (5.109 acres), Jurisdictional Wetlands D (14.275 acres), and Jurisdictional Wetlands E (0.106 acres) are waters of the U.S. subject to regulation under Section 404 of the Clean Water Act.
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION
A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): January 15, 2019

B. DISTRICT OFFICE, FILE NUMBER, FILE NAME: CESAC-RDS; SAC-2018-00884; Jedburg Tract; Form 4 (Kelly Branch) of 4

C. PROJECT LOCATION AND BACKGROUND INFORMATION: A 166.660 acre site located at the intersection of Dawson Branch Road and Jedburg Road.

 State: South Carolina County/parish/borough: Dorchester and Berkeley Counties City: Jedburg
 Center coordinates of site (lat/long in degree decimal format): Lat. 33.082308° N, Long. -80.223052° W.
 Universal Transverse Mercator: NAD83

 Name of nearest waterbody: Kelly Branch
 Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Ashley River
 Name of watershed or Hydrologic Unit Code (HUC): 0305020105, Cypress Swamp

 Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request.
 Check if other sites (e.g., offsite mitigation sites, disposal sites, etc…) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY):
 □ Office (Desk) Determination. Date:
 □ Field Determination. Date(s): August 15, 2018

SECTION II: SUMMARY OF FINDINGS
A. RHA SECTION 10 DETERMINATION OF JURISDICTION.

 There are no “navigable waters of the U.S.” within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area. [Required]

 Waters subject to the ebb and flow of the tide.
 Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

 Explain: .

B. CWA SECTION 404 DETERMINATION OF JURISDICTION.

 There are “waters of the U.S.” within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required]

 1. Waters of the U.S.
 a. Indicate presence of waters of U.S. in review area (check all that apply): 1
 □ TNWs, including territorial seas
 □ Wetlands adjacent to TNWs
 □ Relatively permanent waters\(^2\) (RPWs) that flow directly or indirectly into TNWs
 □ Non-RPWs that flow directly or indirectly into TNWs
 □ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 □ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 □ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 □ Impoundments of jurisdictional waters
 □ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area:
 Non-wetland waters: linear feet: width (ft) and/or acres.
 Wetlands: 3.807 acres
 Jurisdictional Wetlands G – 0.249 acres
 Jurisdictional Wetlands H – 0.365 acres
 Jurisdictional Wetlands I – 3.193 acres

 c. Limits (boundaries) of jurisdiction based on: 1987 Delineation Manual
 Elevation of established OHWM (if known): .

1 Boxes checked below shall be supported by completing the appropriate sections in Section III below.

2 For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least “seasonally” (e.g., typically 3 months).
2. Non-regulated waters/wetlands (check if applicable): [Including potentially jurisdictional features that upon assessment are NOT waters or wetlands]
 □ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional. Explain:

SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: .
 Summarize rationale supporting determination: .

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is “adjacent”: .

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY):

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4.

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody\(^4\) is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:
 Watershed size:
 Drainage area:
 Average annual rainfall: inches
 Average annual snowfall: inches

 (ii) Physical Characteristics:
 (a) Relationship with TNW:
 □ Tributary flows directly into TNW.
 □ Tributary flows through Pick List tributaries before entering TNW.
 Project waters are Pick List river miles from TNW.
 Project waters are Pick List river miles from RPW.
 Project waters are Pick List aerial (straight) miles from TNW.
 Project waters are Pick List aerial (straight) miles from RPW.
 Project waters cross or serve as state boundaries. Explain:

3 Supporting documentation is presented in Section III.F.
4 Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West.
Identify flow route to TNW:\(^5\):

Tributary stream order, if known:

(b) General Tributary Characteristics (check all that apply):

Tributary is:
- [] Natural
- [] Artificial (man-made). Explain:
- [] Manipulated (man-altered). Explain:

Tributary properties with respect to top of bank (estimate):
- Average width: feet
- Average depth: feet
- Average side slopes:

Primary tributary substrate composition (check all that apply):
- [] Silts
- [] Sands
- [] Concrete
- [] Cobble
- [] Gravel
- [] Muck
- [] Bedrock
- [] Vegetation. Type/% cover:
- [] Other. Explain:

Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain:
Presence of run/riffle/pool complexes. Explain:
Tributary geometry:
Tributary gradient (approximate average slope):

(c) Flow:

Tributary provides for:
Estimate average number of flow events in review area/year:
Describe flow regime:
Other information on duration and volume:
Surface flow is: Characteristics:
Subsurface flow: Explain findings:
- [] Dye (or other) test performed:

Tributary has (check all that apply):
- [] Bed and banks
- [] OHWM\(^6\) (check all indicators that apply):
 - clear, natural line impressed on the bank
 - changes in the character of soil
 - shelving
 - vegetation matted down, bent, or absent
 - leaf litter disturbed or washed away
 - sediment deposition
 - water staining
 - other (list):
- [] Discontinuous OHWM.\(^7\) Explain:

If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply):
- [] High Tide Line indicated by:
 - oil or scum line along shore objects
 - fine shell or debris deposits (foreshore)
 - physical markings/characteristics
 - tidal gauges
 - other (list):
- [] Mean High Water Mark indicated by:
 - survey to available datum;
 - physical markings;
 - vegetation lines/changes in vegetation types.

(iii) Chemical Characteristics:
Characterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.).
Explain:
Identify specific pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

\(^5\) Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW.

\(^6\) A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody’s flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break.

\(^7\) Ibid.
Riparian corridor. Characteristics (type, average width):

Wetland fringe. Characteristics:

Habitat for:

☐ Federally Listed species. Explain findings:

☐ Fish/spawn areas. Explain findings:

☐ Other environmentally-sensitive species. Explain findings:

☐ Aquatic/wildlife diversity. Explain findings:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics:

Properties:

☐ Wetland size: acres

☐ Wetland type. Explain:

☐ Wetland quality. Explain:

Project wetlands cross or serve as state boundaries. Explain:

(b) General Flow Relationship with Non-TNW:

Flow is: Pick List. Explain:

Surface flow is: Pick List

Characteristics:

Subsurface flow: Pick List. Explain findings:

☐ Dye (or other) test performed:

(c) Wetland Adjacency Determination with Non-TNW:

☐ Directly abutting

☐ Not directly abutting

☐ Discrete wetland hydrologic connection. Explain:

☐ Ecological connection. Explain:

☐ Separated by berm/barrier. Explain:

(d) Proximity (Relationship) to TNW:

Project wetlands are Pick List river miles from TNW.

Project waters are Pick List aerial (straight) miles from TNW.

Flow is from: Pick List.

Estimate approximate location of wetland as within the Pick List floodplain.

(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain:

Identify specific pollutants, if known:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian buffer. Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

☐ Habitat for:

☐ Federally Listed species. Explain findings:

☐ Fish/spawn areas. Explain findings:

☐ Other environmentally-sensitive species. Explain findings:

☐ Aquatic/wildlife diversity. Explain findings:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in the cumulative analysis: Pick List

Approximately () acres in total are being considered in the cumulative analysis.
For each wetland, specify the following:

<table>
<thead>
<tr>
<th>Directly abuts? (Y/N)</th>
<th>Size (in acres)</th>
<th>Directly abuts? (Y/N)</th>
<th>Size (in acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Summarize overall biological, chemical and physical functions being performed: .

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below:

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D:

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

Documentation for the Record only: Significant nexus findings for seasonal RPWs and/or wetlands abutting seasonal RPWs:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY):

1. **TNWs and Adjacent Wetlands.** Check all that apply and provide size estimates in review area:
 - TNWs: linear feet width (ft), Or, acres.
 - Wetlands adjacent to TNWs: acres.

2. **RPWs that flow directly or indirectly into TNWs.**
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial: Kelly Branch is clearly a perennial tributary of a TNW. The perennial RPW is a named blue line stream on the USGS topographic map. Based on aerial photography Kelly Branch is approximately 30 feet wide near the project site demonstrating the continuous flow of this perennial tributary. Based on infrared aerial photography it
appears that Kelly Branch has abutting wetlands along the length of the tributary upstream of the site. These abutting wetlands provide significant hydrology that contribute to the perennial flow. USGS NHD shows there are numerous tributaries that flow into Kelly Branch upstream of the site. Kelly Branch flows into Stanley Branch that flows into Cypress Swamp that flows into the Ashley River a TNW.

☐ Tributaries of TNW where tributaries have continuous flow “seasonally” (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:.

Provide estimates for jurisdictional waters in the review area (check all that apply):
☐ Tributary waters: linear feet width (ft).
☐ Other non-wetland waters: acres.
Identify type(s) of waters: .

3. Non-RPWs that flow directly or indirectly into TNWs.
☐ Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional waters within the review area (check all that apply):
☐ Tributary waters: linear feet width (ft).
☐ Other non-wetland waters: acres.
Identify type(s) of waters: .

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
☒ Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
☒ Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: Jurisdictional Wetlands G, H, and I totaling 3.807 acres extend outside the boundary of the site and directly flows into the Kelly Branch, a perennial RPW, and share a boundary with Kelly Branch. This direct connection can be seen on LIDAR, USGS topographic maps, USGS NHD, and infrared aerial photography.

☐ Wetlands directly abutting an RPW where tributaries typically flow “seasonally.” Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW:

Provide acreage estimates for jurisdictional wetlands in the review area: acres.

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs.
☐ Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetlands in the review area: acres.

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
☐ Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetlands in the review area: acres.

7. Impoundments of jurisdictional waters.9
As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional.
☐ Demonstrate that impoundment was created from “waters of the U.S.,” or
☐ Demonstrate that water meets the criteria for one of the categories presented above (1-6), or
☐ Demonstrate that water is isolated with a nexus to commerce (see E below).

Explain:

E. ISOLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY SUCH WATERS (CHECK ALL THAT APPLY):10

8See Footnote # 3.
9 To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook.
10 Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos.
which are or could be used by interstate or foreign travelers for recreational or other purposes.
from which fish or shellfish are or could be taken and sold in interstate or foreign commerce.
which are or could be used for industrial purposes by industries in interstate commerce.
Interstate isolated waters. Explain:
Other factors. Explain:
Identify water body and summarize rationale supporting determination:
Provide estimates for jurisdictional waters in the review area (check all that apply):
Tributary waters: linear feet width (ft).
Other non-wetland waters: acres.
Wetlands: acres.

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY):
If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers
Wetland Delineation Manual and/or appropriate Regional Supplements.
Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce.
Prior to the Jan 2001 Supreme Court decision in “SWANCC,” the review area would have been regulated based solely on the
“Migratory Bird Rule” (MBR).
Waters do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction. Explain:
Other: (explain, if not covered above):
Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR
factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional
judgment (check all that apply):
Non-wetland waters (i.e., rivers, streams): linear feet width (ft).
Lakes/ponds: acres.
Other non-wetland waters: acres. List type of aquatic resource:
Wetlands: acres.

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such
a finding is required for jurisdiction (check all that apply):
Non-wetland waters (i.e., rivers, streams): linear feet width (ft).
Lakes/ponds: acres.
Other non-wetland waters: acres. List type of aquatic resource:
Wetlands: acres.

SECTION IV: DATA SOURCES.
A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked
and requested, appropriately reference sources below):
Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: Survey plat entitled “Wetland Delineation for
TMS No: 206-00-00-002, 40.057 Acres, TMS 207-00-01-021, 141.844 Acres and TMS 207-00-01-010, 166.660 Acres, Located in
Berkeley County, All Property of North Charleston Lands Corp., Located Near Jedburg, Dorchester and Berkeley Counties,
South Carolina” Sheet 1-8 of 8 and dated September 21, 2018, prepared by Parker Land Surveying, LLC.
Data sheets prepared/submitted by or on behalf of the applicant/consultant.
Office concurs with data sheets/delineation report.
Office does not concur with data sheets/delineation report.
Data sheets prepared by the Corps:
Corps navigable waters’ study:
U.S. Geological Survey Hydrologic Atlas:
USGS NHD data.
USGS 8 and 12 digit HUC maps.
U.S. Geological Survey map(s). Cite scale & quad name:
USDA Natural Resources Conservation Service Soil Survey. Citation:
National wetlands inventory map(s). Cite name:
State/Local wetland inventory map(s):
FEMA/FIRM maps:
100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)
Photographs: Aerial (Name & Date):
or Other (Name & Date):
Previous determination(s). File no. and date of response letter:

Page 7 of 8
B. ADDITIONAL COMMENTS TO SUPPORT JD: Based on the above information it has been determined by this office that Jurisdictional Wetlands G (0.249 acres), Jurisdictional Wetlands H (0.365 acres), and Jurisdictional Wetlands I (3.193 acres) are waters of the U.S. subject to regulation under Section 404 of the Clean Water Act.