SECTION I: BACKGROUND INFORMATION
A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): 22-June-2016

B. DISTRICT OFFICE, FILE NAME, AND NUMBER: JD Form 1 of 5; SAC 2013-00371 Tract P

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
State: South Carolina County/parish/borough: Chester City: Chester
Center coordinates of site (lat/long in degree decimal format): Lat. 34.742650° N, Long. 81.116119° W.
Universal Transverse Mercator: NAD 83
Name of nearest waterbody: Hooper Branch
Name of nearest Traditional Navigable Water (TNW) Into which the aquatic resource flows: Catawba River

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY):
☒ Office (Desk) Determination. Date: 22-June-2016
☒ Field Determination. Date(s): 10-April-2013

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION.
There Are no “navigable waters of the U.S.” within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area. [Required]
☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce. Explain:

B. CWA SECTION 404 DETERMINATION OF JURISDICTION.
There Are “waters of the U.S.” within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required]

1. Waters of the U.S.
 a. Indicate presence of waters of U.S. in review area (check all that apply): ¹
 ☒ TNWs, including territorial seas
 ☒ Wetlands adjacent to TNWs
 ☒ Relatively permanent waters² (RPWs) that flow directly or indirectly into TNWs
 ☒ Non-RPWs that flow directly or indirectly into TNWs
 ☒ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☒ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☒ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☒ Impoundments of jurisdictional waters
 ☒ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area:
 Non-wetland waters: PRPW 1=828.4 linear feet, PRPW 2=199.4 linear feet, SRPW 3=30.1 linear feet, SRPW 14=683.3 linear feet, and PRPW 1A=233.6 linear feet:
 width (ft) and/or acres.
 Wetlands: Wetland B=1.03 acres, Wetland I=0.8 acre and Wetland H=1.67 acres.

 c. Limits (boundaries) of jurisdiction based on: 1987 Delineation Manual, Established by OHWM., Pick List
 Elevation of established OHWM (if known):

2. Non-regulated waters/wetlands (check if applicable):³
 ☒ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional. Explain:

¹ Boxes checked below shall be supported by completing the appropriate sections in Section III below.
² For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least “seasonally” (e.g., typically 3 months).
³ Supporting documentation is presented in Section III.F.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW:
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is “adjacent”:

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY):

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4.

If the waterbody does not have a significant nexus with a TNW, the agencies will assert jurisdiction over the tributary and its adjacent wetlands. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4.

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:
 Watershed size: 127,983 acres; 03050103-05 Rocky Creek
 Drainage area: SRPW 14=27 acres and SRPW 3=less than 1 acre
 Average annual rainfall: 46.59 inches
 Average annual snowfall: 3.1 inches

 (ii) Physical Characteristics:
 (a) Relationship with TNW:
 ☑ Tributary flows directly into TNW.
 ☑ Tributary flows through 3 tributaries before entering TNW.
 Project waters are 30 (or more) river miles from TNW.
 Project waters are 1 (or less) river miles from RPW.
 Project waters are 30 (or more) aerial (straight) miles from TNW.
 Project waters are 1 (or less) aerial (straight) miles from RPW.
 Project waters cross or serve as state boundaries. Explain:

 Identify flow route to TNW: Hooper Branch which flows to Rocky Creek which flows to Cedar Creek Reservoir which flows to the Catawba River (Navigable Water of the US and Traditional Navigable Water).

4 Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West.
5 Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW.
(b) General Tributary Characteristics (check all that apply):

Tributary is:
- Natural
- Artificial (man-made).
- Manipulated (man-altered).

Tributary properties with respect to top of bank (estimate):
- Average width:
- Average depth:
- Average side slopes: Pick List.

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Cobbles
- Gravel
- Muck
- Bedrock
- Vegetation. Type/% cover: Other.

According to the soil survey, the seasonal RPWs are surrounded by Iredell soils. These soils are moderately well drained, permeable clayey soils.

Tributary condition/stability [e.g., highly eroding, sloughing banks].

Presence of run/riffle/pool complexes.

Tributary geometry: Meandering.

Tributary gradient (approximate average slope): %

(c) Flow:

Tributary provides for: Seasonal flow

Estimate average number of flow events in review area/year: 20 (or greater)

Describe flow regime: SRPW 14 and SRPW 3 flow during the wetter months and after rain events. Other information on duration and volume: SRPW 14 and SRPW 3 have distinct channels and clear OHWMs.

Surface flow is: Discrete and confined. Characteristics: Water flows through the channels during normal conditions.

Subsurface flow: Unknown. Explain findings: Dye (or other) test performed:

Tributary has (check all that apply):
- Bed and banks
- OHWM\(^\text{6}\) (check all indicators that apply):
 - clear, natural line impressed on the bank
 - changes in the character of soil
 - shelving
 - vegetation matted down, bent, or absent
 - leaf litter disturbed or washed away
 - sediment deposition
 - water staining
 - other (list):

Discontinuous OHWM.\(^\text{7}\) Explain:

If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply):
- High Tide Line indicated by:
- Mean High Water Mark indicated by:

(iii) Chemical Characteristic:
Characterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.).

Explain: The watershed land use includes 70.4% forested land, 20.5% agricultural land, 6.4% urban land, 1.6% forested wetland (swamp), 0.6% barren land, and 0.5% water. Recreational uses are partially supported on Rocky

\(^\text{6}\)A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody’s flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break.

\(^\text{7}\)Ibid.
Creek due to fecal coliform bacteria excursions. Downstream there is a significant increasing trend in five-day biochemical oxygen demand..

Identify specific pollutants, if known: Possibility of pollutants from nearby railroad and road.

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian corridor. Characteristics (type, average width):
- Wetland fringe. Characteristics:
- Habitat for:
 - Federally Listed species. Explain findings:
 - Fish/spawn areas. Explain findings:
 - Other environmentally-sensitive species. Explain findings:
 - Aquatic/wildlife diversity. Explain findings:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics:

Properties:
- Wetland size: **Wetland B=1.03 acres**
- Wetland type. Explain: Forested.

Project wetlands cross or serve as state boundaries. Explain: .

(b) General Flow Relationship with Non-TNW:

Flow is: **Ephemeral flow**. Explain: Water flows from wetland after heavy rain.

Surface flow is: **Overland sheetflow**. Characteristics: Water flows overland and through swales.

Subsurface flow: Unknown. Explain findings: .
- Dye (or other) test performed: .

(c) Wetland Adjacency Determination with Non-TNW:

- Directly abutting
- Not directly abutting
 - Discrete wetland hydrologic connection. Explain: .
 - Ecological connection. Explain: Water flows overland and through swales.
 - Separated by berm/barrier. Explain: .

(d) Proximity (Relationship) to TNW

Project wetlands are **30 (or more)** river miles from TNW.
Project waters are **30 (or more)** aerial (straight) miles from TNW.
Flow is from: **Wetland to navigable waters**.

Estimate approximate location of wetland as within the Pick List floodplain.

(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain: The watershed land use includes 70.4% forested land, 20.5% agricultural land, 6.4% urban land, 1.6% forested wetland (swamp), 0.6% barren land, and 0.5% water. Recreational uses are partially supported on Rocky Creek due to fecal coliform bacteria excursions. Downstream there is a significant increasing trend in five-day biochemical oxygen demand.

Identify specific pollutants, if known: Possible pollutants from nearby railroad and roadway.

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian buffer. Characteristics (type, average width): .
- Vegetation type/percent cover. Explain: .
- Habitat for:
 - Federally Listed species. Explain findings: .
 - Fish/spawn areas. Explain findings: Provides breeding grounds for aquatic species.
 - Other environmentally-sensitive species. Explain findings: .
 - Aquatic/wildlife diversity. Explain findings: Provides habitat for wildlife in the area.

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in the cumulative analysis: 1
Approximately (1.03) acres in total are being considered in the cumulative analysis.
For each wetland, specify the following:

<table>
<thead>
<tr>
<th>Directly abuts? (Y/N)</th>
<th>Size (in acres)</th>
<th>Directly abuts? (Y/N)</th>
<th>Size (in acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>1.03</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Summarize overall biological, chemical and physical functions being performed: Wetland B is abutting SRPW 14. This wetland and the RPW are collectively performing biological, chemical, and physical functions that relate to the TNW. The wetland is less than 1 mile from the nearest perennial RPW. This wetland and seasonal RPW are located on a site that is close to a major road and railroad. The site also has several areas cleared for fields. The wetland is forested. The wetland and tributary provide breeding grounds for aquatic species and habitat for wildlife in the area. They help to filter pollutants and run-off before they travel downstream to the TNW. They also perform flow maintenance functions with storage of flood water during times of heavy rain and during the wetter months.

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below:

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D:

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

Documentation for the Record only: Significant nexus findings for seasonal RPWs and/or wetlands abutting seasonal RPWs: SRPW 3 and SRPW 14 are located in the northeastern part of the tract. Wetland B is abutting SRPW 14 They are performing a variety of functions that relate to the biological, chemical, and physical integrity of the TNW. These seasonal tributaries and wetland are located on a tract that is adjacent to a major road and railway. These tributaries and wetland provide breeding grounds for aquatic species and habitat for wildlife in the area. These tributaries and wetland also help to filter pollutants and run-off from the nearby road and railway before they flow downstream to the TNW. The tributaries and wetland help store water during times of heavy rain and the wetter months. Based on the collective functions described above and their importance
to the biological, chemical, and physical integrity of the downstream TNW, it has been determined there is a significant nexus between the tributaries and wetland to the downstream TNW.

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY):

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs: linear feet width (ft), Or; acres.
 - Wetlands adjacent to TNWs: acres.

2. RPWs that flow directly or indirectly into TNWs. If tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial: PRPW 1, PRPW 2, and PRPW 1A are perennial tributaries. PRPW 1 is shown as a blue line on the topo map. These tributaries were observed flowing during flagging and during the Corps site visit. They have clear OHWMS and distinct channels. Stream characteristics observed and available data led this office to conclude the tributaries have a perennial flow regime.
 - Tributaries of TNW where tributaries have continuous flow “seasonally” (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: SRPW 3 and SRPW 14 are seasonal tributaries that flow into PRPW 1. They are shown as contours on the topo map. Stream characteristics observed and available data led this office to conclude the tributaries have a seasonal flow regime.

3. Non-RPWs* that flow directly or indirectly into TNWs. Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C.

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs. Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: Wetland H is directly abutting PRPW 1 and Wetland I is directly abutting PRPW 2.

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs. Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs. Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

*See Footnote # 3.
7. Impoundments of jurisdictional waters.
As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional.
- Demonstrate that impoundment was created from “waters of the U.S.,” or
- Demonstrate that water meets the criteria for one of the categories presented above (1-6), or
- Demonstrate that water is isolated with a nexus to commerce (see E below).

Explain:

E. ISOLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY SUCH WATERS (CHECK ALL THAT APPLY):\(^\text{10}\)
- which are or could be used by interstate or foreign travelers for recreational or other purposes.
- from which fish or shellfish are or could be taken and sold in interstate or foreign commerce.
- which are or could be used for industrial purposes by industries in interstate commerce.
- Interstate isolated waters. Explain:
- Other factors. Explain:

Identify water body and summarize rationale supporting determination: .

Provide estimates for jurisdictional waters in the review area (check all that apply):
- Tributary waters: linear feet width (ft).
- Other non-wetland waters: acres. Identify type(s) of waters: .
- Wetlands: acres.

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY):
- If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements.
- Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce.
 - Prior to the Jan 2001 Supreme Court decision in “SWANCC,” the review area would have been regulated based solely on the “Migratory Bird Rule” (MBR).
 - Waters do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction. Explain: .
 - Other: (explain, if not covered above): .

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):
- Non-wetland waters (i.e., rivers, streams): linear feet width (ft).
- Lakes/ponds: acres.
- Other non-wetland waters: acres. List type of aquatic resource: .
- Wetlands: acres.

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):
- Non-wetland waters (i.e., rivers, streams): linear feet width (ft).
- Lakes/ponds: acres.
- Other non-wetland waters: acres. List type of aquatic resource: .
- Wetlands: acres.

SECTION IV: DATA SOURCES.

A. SUPPORTING DATA. Data reviewed for JD (check all that apply) - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):
- Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: S&ME.
- Data sheets prepared/submitted by or on behalf of the applicant/consultant.
- Office concurs with data sheets/delineation report. This office agrees with the conclusions of the data sheets.
- Office does not concur with data sheets/delineation report.
- Data sheets prepared by the Corps: .
- Corps navigable waters’ study: 1977 Navigability Study.

\(^9\) To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook.

\(^10\) Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos.
B. ADDITIONAL COMMENTS TO SUPPORT JD: The aquatic resources documented on this form include 3 perennial RPWs with 2 abutting wetlands and 2 seasonal RPWs with an abutting wetland. RPWs and abutting wetlands are jurisdictional according to RGL 07-01, however, the significant nexus findings for the record are included as required by Rapanos Guidance. The waters documented on this form are waters of the U.S. and are within the jurisdiction of the Clean Water Act.
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): 22-June-2016

B. DISTRICT OFFICE, FILE NAME, AND NUMBER: JD Form 2 of 5; SAC 2013-00371 Tract P

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
 State: South Carolina County/parish/borough: Chester City: Chester
 Center coordinates of site (lat/long in degree decimal format): Lat. 34.742650° N, Long. 81.116119° W.
 Universal Transverse Mercator: NAD 83
 Name of nearest waterbody: Hooper Branch
 Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Catawba River
 Name of watershed or Hydrologic Unit Code (HUC): 03050103-05 Lower Catawba
 Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request.
 Check if other sites (e.g., offsite mitigation sites, disposal sites, etc…) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY):
 ☒ Office (Desk) Determination. Date: 22-June-2016
 ☒ Field Determination. Date(s): 10-April-2013

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION.
 There are no “navigable waters of the U.S.” within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area. [Required]
 ☐ Waters subject to the ebb and flow of the tide.
 ☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.
 Explain: .

B. CWA SECTION 404 DETERMINATION OF JURISDICTION.
 There are “waters of the U.S.” within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required]

1. Waters of the U.S.
 a. Indicate presence of waters of U.S. in review area (check all that apply): 1
 ☐ TNWs, including territorial seas
 ☒ Wetlands adjacent to TNWs
 ☒ Relatively permanent waters2 (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☒ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands
 b. Identify (estimate) size of waters of the U.S. in the review area:
 Non-wetland waters: PRPW 15=518.34 linear feet and SRPW 16=925.1 linear feet: width (ft) and/or acres.
 Wetlands: Wetland A=1.4 acres and Wetland F=0.87 acres.
 Elevation of established OHWM (if known): .

2. Non-regulated waters/wetlands (check if applicable): 3
 ☐ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional.
 Explain: .

1 Boxes checked below shall be supported by completing the appropriate sections in Section III below.
2 For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least “seasonally” (e.g., typically 3 months).
3 Supporting documentation is presented in Section III.F.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: .

 Summarize rationale supporting determination: .

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is “adjacent”: .

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY):

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4.

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody4 is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:
 Watershed size: 127,983 acres; 03050103-05 Rocky Creek
 Drainage area: SRPW 16=24.6 acres
 Average annual rainfall: 46.59 inches
 Average annual snowfall: 3.1 inches

 (ii) Physical Characteristics:
 (a) Relationship with TNW:
 ☐ Tributary flows directly into TNW.
 ☑ Tributary flows through 3 tributaries before entering TNW.

 Project waters are 30 (or more) river miles from TNW.
 Project waters are 1 (or less) river miles from RPW.
 Project waters are 30 (or more) aerial (straight) miles from TNW.
 Project waters are 1 (or less) aerial (straight) miles from RPW.
 Project waters cross or serve as state boundaries. Explain: .

 Identify flow route to TNW5: Hooper Branch which flows to Rocky Creek which flows to Cedar Creek Reservoir which flows to the Catawba River (Navigable Water of the US and Traditional Navigable Water).

 Tributary stream order, if known: .

4 Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West.
5 Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW.
(b) General Tributary Characteristics (check all that apply):

- Tributary is:
 - [x] Natural
 - [] Artificial (man-made). Explain:
 - [] Manipulated (man-altered). Explain:

- Tributary properties with respect to top of bank (estimate):
 - Average width: feet
 - Average depth: feet
 - Average side slopes: Pick List.

- Primary tributary substrate composition (check all that apply):
 - [x] Silts
 - [] Sands
 - [x] Cobble
 - [] Gravel
 - [] Concrete
 - [] Muck
 - [x] Bedrock
 - [] Vegetation. Type/% cover: Other. Explain: According to the soil survey, the SRPW 16 is surrounded by Iredell soils. These soils are moderately well drained, permeable clayey soils.

- Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain:
- Presence of run/riffle/pool complexes. Explain:
- Tributary geometry: Meandering.
- Tributary gradient (approximate average slope): %

(c) Flow:

- Tributary provides for: Seasonal flow.
- Estimate average number of flow events in review area/year: 20 (or greater)
- Describe flow regime: SRPW 16 flows during the wetter months and after rain events.

- Other information on duration and volume: SRPW 16 has a distinct channel and clear OHWM.

- Surface flow is: Discrete and confined. Characteristics: Water flows through the channel during normal conditions.

- Subsurface flow: Unknown. Explain findings:
- [] Dye (or other) test performed:

- Tributary has (check all that apply):
 - [x] Bed and banks
 - [x] OHWM\(^6\) (check all indicators that apply):
 - clear, natural line impressed on the bank
 - changes in the character of soil shelving
 - vegetation matted down, bent, or absent
 - leaf litter disturbed or washed away
 - sediment deposition
 - water staining
 - other (list):
 - [] Discontinuous OHWM.\(^7\) Explain:

- If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply):
 - [] High Tide Line indicated by:
 - Mean High Water Mark indicated by:
 - oil or scum line along shore objects
 - fine shell or debris deposits (foreshore)
 - physical markings/characteristics
 - other (list):

(ii) Chemical Characteristics:

- Characterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.).
- Explain: The watershed land use includes 70.4% forested land, 20.5% agricultural land, 6.4% urban land, 1.6% forested wetland (swamp), 0.6% barren land, and 0.5% water. Recreational uses are partially supported on Rocky Creek due to fecal coliform bacteria excursions. Downstream there is a significant increasing trend in five-day biochemical oxygen demand.
- Identify specific pollutants, if known: Possibility of pollutants from nearby railroad and road.

\(^6\) A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody’s flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break.

\(^7\) Ibid.
(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian corridor. Characteristics (type, average width): .
- Habitat for:
 - Federally Listed species. Explain findings: .
 - Fish/spawn areas. Explain findings: Provides breeding grounds for aquatic species.
 - Other environmentally-sensitive species. Explain findings: .
 - Aquatic/wildlife diversity. Explain findings: Provides habitat for wildlife in the area.

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics:

- Wetland size: Wetland A=1.4 acres
- Wetland type. Explain: Forested.

Project wetlands cross or serve as state boundaries. Explain: .

(b) General Flow Relationship with Non-TNW:

- Flow is: Ephemeral flow. Explain: Water flows from wetland after heavy rains.

Surface flow is: Overland sheetflow

- Characteristics: Water flows over land and through swales.

- Subsurface flow: Unknown. Explain findings: .

- Dye (or other) test performed: .

(c) Wetland Adjacency Determination with Non-TNW:

- Directly abutting
- Not directly abutting

- Discrete wetland hydrologic connection. Explain: .
- Ecological connection. Explain: Water flows overland and through swales to seasonal tributary.
- Separated by berm/barrier. Explain: .

(d) Proximity (Relationship) to TNW:

- Project wetlands are 30 (or more) river miles from TNW.
- Project waters are 30 (or more) aerial (straight) miles from TNW.

Flow is from: Wetland to navigable waters.

Estimate approximate location of wetland as within the Pick List floodplain.

(ii) Chemical Characteristics:

- Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain: The watershed land use includes 70.4% forested land, 20.5% agricultural land, 6.4% urban land, 1.6% forested wetland (swamp), 0.6% barren land, and 0.5% water. Recreational uses are partially supported on Rocky Creek due to fecal coliform bacteria excursions. Downstream there is a significant increasing trend in five-day biochemical oxygen demand.

- Identify specific pollutants, if known: Possible pollutants from nearby railroad and roads.

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian buffer. Characteristics (type, average width): .
- Vegetation type/percent cover. Explain: .

- Habitat for:
 - Federally Listed species. Explain findings: .
 - Fish/spawn areas. Explain findings: Provides breeding grounds for aquatic species.
 - Other environmentally-sensitive species. Explain findings: .
 - Aquatic/wildlife diversity. Explain findings: Provides habitat for wildlife in the area.

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in the cumulative analysis: 1

Approximately (1.4) acres in total are being considered in the cumulative analysis.
For each wetland, specify the following:

<table>
<thead>
<tr>
<th>Directly abuts? (Y/N)</th>
<th>Size (in acres)</th>
<th>Directly abuts? (Y/N)</th>
<th>Size (in acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>1.4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Summarize overall biological, chemical and physical functions being performed: Wetland A is adjacent to SRPW 16. This wetland and the RPW are collectively performing biological, chemical, and physical functions that relate to the TNW. The wetland is less than 1 mile from the nearest perennial RPW. This wetland and seasonal RPW are located on a site that is close to a major road and railroad. The site also has several areas cleared for fields. The wetland is forested. The wetland and tributary provide breeding grounds for aquatic species and habitat for wildlife in the area. They help to filter pollutants and run-off before they travel downstream to the TNW. They also perform flow maintenance functions with storage of flood water during times of heavy rain and during the wetter months.

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below:

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D: .

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: .

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: .

Documentation for the Record only: Significant nexus findings for seasonal RPWs and/or wetlands abutting seasonal RPWs: Wetland A is adjacent to SRPW 16. This wetland and the RPW are collectively performing biological, chemical, and physical functions that relate to the TNW. The wetland is less than 1 mile from the nearest perennial RPW. This wetland and seasonal RPW are located on a site that is close to a major road and railroad. The site also has several areas cleared for fields. The wetland is forested. The wetland and tributary provide breeding grounds for aquatic species and habitat for wildlife in the area. They help to filter pollutants and run-off before they travel downstream to the TNW. They also perform flow maintenance functions with storage of flood water during times of heavy rain and during the wetter months. Based on the collective functions
described above and their importance to the biological, chemical, and physical integrity of the downstream TNW, it has been determined there is a significant nexus between the tributaries to the downstream TNW.

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY):

1. **TNWs and Adjacent Wetlands.** Check all that apply and provide size estimates in review area:
 - **TNWs:** linear feet width (ft), Or, acres.
 - Wetlands adjacent to TNWs: acres.

2. **RPWs that flow directly or indirectly into TNWs.**
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial: **PRPW 15** is a perennial tributary. It is shown as a dashed blue line on the topo and soil survey. This tributary was observed flowing during flagging and during the Corps site visit. It has a clear OHWM and distinct channel. Stream characteristics observed and available data led this office to conclude the tributary has a perennial flow regime.
 - Tributaries of TNW where tributaries have continuous flow “seasonally” (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: **SRPW 16** is a seasonal tributary. It is shown as a contour on the topo map and as seasonal on the soil map. Stream characteristics observed and available data led this office to conclude the tributary has a seasonal flow regime.

 Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters: **PRPW 15**=518.34 linear feet and **SRPW 16**=925.1 linear feet width (ft).
 - Other non-wetland waters: acres.
 - Identify type(s) of waters: .

3. **Non-RPWs** that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide estimates for jurisdictional waters within the review area (check all that apply):
 - Tributary waters: linear feet width (ft).
 - Other non-wetland waters: acres.
 - Identify type(s) of waters: .

4. **Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.**
 - Wetlands directly abutting an RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: **Wetland F is directly abutting PRPW 15.**

 Provide acreage estimates for jurisdictional wetlands in the review area: **Wetland F=0.87** acres.

5. **Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs.**
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetlands in the review area: **Wetland A=1.4** acres.

6. **Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.**
 - Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide estimates for jurisdictional wetlands in the review area: acres.

7. **Impoundments of jurisdictional waters.**
 - As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional.

8 See Footnote # 3.
9 To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook.
Demonstrate that impoundment was created from “waters of the U.S.,” or
Demonstrate that water meets the criteria for one of the categories presented above (1-6), or
Demonstrate that water is isolated with a nexus to commerce (see E below).

Explain:

E. ISOLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY SUCH WATERS (CHECK ALL THAT APPLY): 10

☐ which are or could be used by interstate or foreign travelers for recreational or other purposes.
☐ from which fish or shellfish are or could be taken and sold in interstate or foreign commerce.
☐ which are or could be used for industrial purposes by industries in interstate commerce.
☐ Interstate isolated waters. Explain: .
☐ Other factors. Explain: .

Identify water body and summarize rationale supporting determination: .

Provide estimates for jurisdictional waters in the review area (check all that apply):
☐ Tributary waters: linear feet width (ft).
☐ Other non-wetland waters: acres.
☐ Identify type(s) of waters: .
☐ Wetlands: acres.

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY):

☐ If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements.
☐ Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce.
☐ Prior to the Jan 2001 Supreme Court decision in "SWANCC," the review area would have been regulated based solely on the "Migratory Bird Rule" (MBR).
☐ Waters do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction. Explain: .
☐ Other: (explain, if not covered above): .

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):
☐ Non-wetland waters (i.e., rivers, streams): linear feet width (ft).
☐ Lakes/ponds: acres.
☐ Other non-wetland waters: acres. List type of aquatic resource: .
☐ Wetlands: acres.

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):
☐ Non-wetland waters (i.e., rivers, streams): linear feet width (ft).
☐ Lakes/ponds: acres.
☐ Other non-wetland waters: acres. List type of aquatic resource: .
☐ Wetlands: acres.

SECTION IV: DATA SOURCES.

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):
☐ Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: S&ME.
☐ Data sheets prepared/submitted by or on behalf of the applicant/consultant.
☐ Office concurs with data sheets/delineation report. This office agrees with the conclusions of the data sheets.
☐ Office does not concur with data sheets/delineation report.
☐ Data sheets prepared by the Corps: .
☐ Corps navigable waters’ study: 1977 Navigability Study.
☐ USGS NHD data.
☐ USGS 8 and 12 digit HUC maps.
☐ U.S. Geological Survey map(s). Cite scale & quad name: 1:24,000 Richburg.

10 Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos.
B. ADDITIONAL COMMENTS TO SUPPORT JD: The aquatic resources documented on this form include 1 perennial RPW with an abutting wetland and 1 seasonal RPW with an adjacent wetland. RPWs and abutting wetlands are jurisdictional according to RGL 07-01. A significant nexus determination was performed for the seasonal RPW and adjacent wetland. Based on the documentation provided in Section III, C of this form, the nexus is significant. The waters documented on this form are waters of the U.S. and are within the jurisdiction of the Clean Water Act.
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S. Army Corps of Engineers

This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION
A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): 22-June-2016

B. DISTRICT OFFICE, FILE NAME, AND NUMBER: JD Form 3 of 5; SAC 2013-00371 Tract P

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
 State: South Carolina County/parish/borough: Chester
 City: Chester
 Center coordinates of site (lat/long in degree decimal format): Lat. 34.742650° N, Long. 81.116119° W.
 Universal Transverse Mercator: NAD 83
 Name of nearest waterbody: Hooper Branch
 Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Catawba River
 Name of watershed or Hydrologic Unit Code (HUC): 03050103-05 Lower Catawba
 Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request.
 Check if other sites (e.g., offsite mitigation sites, disposal sites, etc.) are associated with this action and are recorded on a
different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY):
 ☑ Office (Desk) Determination. Date: 22-June-2016
 ☑ Field Determination. Date(s): 10-April-2013

SECTION II: SUMMARY OF FINDINGS
A. RHA SECTION 10 DETERMINATION OF JURISDICTION.
 There are no “navigable waters of the U.S.” within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the
review area. [Required]
 □ Waters subject to the ebb and flow of the tide.
 □ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.
 Explain: .

B. CWA SECTION 404 DETERMINATION OF JURISDICTION.
 There are “waters of the U.S.” within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required]

1. Waters of the U.S.
 a. Indicate presence of waters of U.S. in review area (check all that apply): 1
 ☑ TNWs, including territorial seas
 ☑ Wetlands adjacent to TNWs
 ☑ Relatively permanent waters2 (RPWs) that flow directly or indirectly into TNWs
 ☑ Non-RPWs that flow directly or indirectly into TNWs
 ☑ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☑ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☑ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☑ Impoundments of jurisdictional waters
 ☑ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area:
 Non-wetland waters: PRPW 7=4,772.5 linear feet and PRPW 8=828.4 linear feet: width (ft) and/or acres.
 Wetlands: Wetland G=0.04 acre and Wetland L=0.03 acres.

 Elevation of established OHWM (if known): .

2. Non-regulated waters/wetlands (check if applicable):3
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional.
 Explain: .

1 Boxes checked below shall be supported by completing the appropriate sections in Section III below.
2 For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least “seasonally”
(e.g., typically 3 months).
3 Supporting documentation is presented in Section III.F.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: .
 Summarize rationale supporting determination: .

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is “adjacent”: .

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY):

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4.

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody4 is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:
 Watershed size: acres ;
 Drainage area:
 Average annual rainfall: inches
 Average annual snowfall: inches

 (ii) Physical Characteristics:
 (a) Relationship with TNW:
 ☐ Tributary flows directly into TNW.
 ☐ Tributary flows through Pick List tributaries before entering TNW.
 Project waters are Pick List river miles from TNW.
 Project waters are Pick List river miles from RPW.
 Project waters are Pick List aerial (straight) miles from TNW.
 Project waters are Pick List aerial (straight) miles from RPW.
 Project waters cross or serve as state boundaries. Explain: .
 Identify flow route to TNW5: .
 Tributary stream order, if known: .

4 Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West.
5 Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW.
(b) General Tributary Characteristics (check all that apply):

Tributary is:
- [] Natural

Tributary properties with respect to top of bank (estimate):
- Average width: feet
- Average depth: feet
- Average side slopes: Pick List.

Primary tributary substrate composition (check all that apply):
- [] Silts
- [] Sands
- [] Concrete
- [] Cobble
- [] Gravel
- [] Muck
- [] Bedrock
- [] Vegetation. Type/% cover: .
- [] Other. Explain: .

Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain: .

Tributary geometry: Pick List. Explain: .

Tributary gradient (approximate average slope): %

(c) Flow:

Tributary provides for: Pick List

Estimate average number of flow events in review area/year: Pick List

Describe flow regime: .

Other information on duration and volume: .

Subsurface flow: Pick List. Explain findings: .

- Dye (or other) test performed: .

Tributary has (check all that apply):
- [] Bed and banks
- [] OHWM* (check all indicators that apply):
 - clear, natural line impressed on the bank
 - changes in the character of soil
 - shelving
 - vegetation matted down, bent, or absent
 - leaf litter disturbed or washed away
 - sediment deposition
 - water staining
 - other (list): .

- Discontinuous OHWM.7 Explain: .

If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply):
- [] High Tide Line indicated by:
 - oil or scum line along shore objects
 - fine shell or debris deposits (foreshore)
 - physical markings/characteristics
 - tidal gauges
 - other (list): .

- Mean High Water Mark indicated by:
 - survey to available datum;
 - physical markings;
 - vegetation lines/changes in vegetation types.

(iii) Chemical Characteristics:

Characterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.). Explain: .

Identify specific pollutants, if known: .

(iv) Biological Characteristics. Channel supports (check all that apply):

- [] Riparian corridor. Characteristics (type, average width): .
- [] Habitat for:

*A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody’s flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break.

7Ibid.
2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:
 (a) General Wetland Characteristics:
 Properties:
 Wetland size: _______ acres
 Wetland type. Explain: .
 Project wetlands cross or serve as state boundaries. Explain: .

 (b) General Flow Relationship with Non-TNW:
 Flow is: Pick List. Explain: .
 Surface flow is: Pick List
 Characteristics: .
 Subsurface flow: Pick List. Explain findings: .
 Dye (or other) test performed: .

 (c) Wetland Adjacency Determination with Non-TNW:
 Directly abutting
 Not directly abutting
 Discrete wetland hydrologic connection. Explain: .
 Ecological connection. Explain: .
 Separated by berm/barrier. Explain: .

 (d) Proximity (Relationship) to TNW
 Project wetlands are Pick List river miles from TNW.
 Project waters are Pick List aerial (straight) miles from TNW.
 Flow is from: Pick List.
 Estimate approximate location of wetland as within the Pick List floodplain.

(ii) Chemical Characteristics:
 Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain: .
 Identify specific pollutants, if known: .

(iii) Biological Characteristics. Wetland supports (check all that apply):
 □ Riparian buffer. Characteristics (type, average width): .
 □ Vegetation type/percent cover. Explain: .
 □ Habitat for:
 □ Federally Listed species. Explain findings: .
 □ Fish/spawn areas. Explain findings: .
 □ Other environmentally-sensitive species. Explain findings: .
 □ Aquatic/wildlife diversity. Explain findings: .

3. Characteristics of all wetlands adjacent to the tributary (if any)
 All wetland(s) being considered in the cumulative analysis: Pick List
 Approximately (_______) acres in total are being considered in the cumulative analysis.
For each wetland, specify the following:

<table>
<thead>
<tr>
<th>Directly abuts? (Y/N)</th>
<th>Size (in acres)</th>
<th>Directly abuts? (Y/N)</th>
<th>Size (in acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Summarize overall biological, chemical and physical functions being performed: .

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or inessential effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below:

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D: .

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: .

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: .

Documentation for the Record only: Significant nexus findings for seasonal RPWs and/or wetlands abutting seasonal RPWs: .

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY):

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs: linear feet width (ft), Or, acres.
 - Wetlands adjacent to TNWs: acres.

2. RPWs that flow directly or indirectly into TNWs.
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial: PRPW 7 & PRPW 8 are perennial tributaries. PRPW 7 is shown as a blue line on the topo and as
perennial on the soil survey. The tributaries were observed flowing during flagging and during the Corps site visit. They have clear OHWMs and distinct channels. Stream characteristics observed and available data led this office to conclude the tributaries have a perennial flow regime.

☐ Tributaries of TNW where tributaries have continuous flow “seasonally” (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: .

Provide estimates for jurisdictional waters in the review area (check all that apply):
☐ Tributary waters: PRPW 7=4,772.5 linear feet and PRPW 8=828.4 linear feet width (ft).
☐ Other non-wetland waters: acres.
Identify type(s) of waters: .

3. Non-RPWs9 that flow directly or indirectly into TNWs.
☐ Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional waters within the review area (check all that apply):
☐ Tributary waters: linear feet width (ft).
☐ Other non-wetland waters: acres.
Identify type(s) of waters: .

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
☒ Wetlands directly abutting RPW and thus are jurisdictional as adjacent wetlands.
☒ Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: Wetland G and Wetland L are directly abutting PRPW 7.

☐ Wetlands directly abutting an RPW where tributaries typically flow “seasonally.” Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: .

Provide acreage estimates for jurisdictional wetlands in the review area: Wetland G=0.04 acre and Wetland L=0.03 acres.

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs.
☐ Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetlands in the review area: acres.

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
☐ Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetlands in the review area: acres.

7. Impoundments of jurisdictional waters.9
As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional.
☐ Demonstrate that impoundment was created from “waters of the U.S.,” or
☐ Demonstrate that water meets the criteria for one of the categories presented above (1-6), or
☐ Demonstrate that water is isolated with a nexus to commerce (see E below).

Explain:

E. ISOLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY SUCH WATERS (CHECK ALL THAT APPLY):10
☐ which are or could be used by interstate or foreign travelers for recreational or other purposes.
☐ from which fish or shellfish are or could be taken and sold in interstate or foreign commerce.

8See Footnote # 3.
9 To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook.
10 Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos.
which are or could be used for industrial purposes by industries in interstate commerce.

Interstate isolated waters. Explain: .

Other factors. Explain: .

Identify water body and summarize rationale supporting determination: .

Provide estimates for jurisdictional waters in the review area (check all that apply):

<table>
<thead>
<tr>
<th>Type of Waters</th>
<th>Linear Feet</th>
<th>Width (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tributary waters</td>
<td>linear feet</td>
<td>width (ft).</td>
</tr>
<tr>
<td>Other non-wetland waters</td>
<td>acres.</td>
<td></td>
</tr>
<tr>
<td>Identify type(s) of waters:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetlands</td>
<td>acres.</td>
<td></td>
</tr>
</tbody>
</table>

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY):

- If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements.
- Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce.
- Prior to the Jan 2001 Supreme Court decision in “SWANCC,” the review area would have been regulated based solely on the “Migratory Bird Rule” (MBR).
- Waters do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction. Explain: .
- Other: (explain, if not covered above): .

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

<table>
<thead>
<tr>
<th>Type of Waters</th>
<th>Linear Feet</th>
<th>Width (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-wetland waters (i.e., rivers, streams)</td>
<td>linear feet</td>
<td>width (ft).</td>
</tr>
<tr>
<td>Lakes/ponds</td>
<td>acres.</td>
<td></td>
</tr>
<tr>
<td>Other non-wetland waters</td>
<td>acres. List type of aquatic resource: .</td>
<td></td>
</tr>
<tr>
<td>Wetlands</td>
<td>acres.</td>
<td></td>
</tr>
</tbody>
</table>

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

<table>
<thead>
<tr>
<th>Type of Waters</th>
<th>Linear Feet</th>
<th>Width (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-wetland waters (i.e., rivers, streams)</td>
<td>linear feet</td>
<td>width (ft).</td>
</tr>
<tr>
<td>Lakes/ponds</td>
<td>acres.</td>
<td></td>
</tr>
<tr>
<td>Other non-wetland waters</td>
<td>acres. List type of aquatic resource: .</td>
<td></td>
</tr>
<tr>
<td>Wetlands</td>
<td>acres.</td>
<td></td>
</tr>
</tbody>
</table>

SECTION IV: DATA SOURCES.

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: S&ME.
- Data sheets prepared/submitted by or on behalf of the applicant/consultant.
- Office concurs with data sheets/delineation report. This office agrees with the conclusions of the data sheets.
- Office does not concur with data sheets/delineation report.
- Data sheets prepared by the Corps: .
- Corps navigable waters’ study: 1977 Navigability Study.
- USGS NHD data.
- USGS 8 and 12 digit HUC maps.
- USGS Geological Survey map(s). Cite scale & quad name: 1:24,000 Richburg.
- USDA Natural Resources Conservation Service Soil Survey. Citation: Chester County Soil Map 13-Chewacla, Iredell, Mecklenburg.
- National wetlands inventory map(s). Cite name: PUBHh.
- State/Local wetland inventory map(s): .
- FEMA/FIRM maps: .
- 100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)
- or Other (Name & Date): Photos 1-30 of 30 taken by S&ME dated January 29-30 & February 4-5, 2013.
- Previous determination(s). File no. and date of response letter: .
- Applicable/supporting case law: .
- Applicable/supporting scientific literature: .
- Other information (please specify): Corps Site Visit.
B. ADDITIONAL COMMENTS TO SUPPORT JD: The aquatic resources documented on this form include 2 perennial RPWs with abutting wetlands. Based on guidance in RGL 07-01, perennial RPWs and abutting wetlands are jurisdictional. The waters documented on this form are waters of the U.S. and are within the jurisdiction of the Clean Water Act.
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): 22-June-2016

B. DISTRICT OFFICE, FILE NAME, AND NUMBER: JD Form 4 of 5; SAC 2013-00371 Tract P

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
 - State: South Carolina
 - County/parish/borough: Chester
 - City: Chester
 - Center coordinates of site (lat/long in degree decimal format): Lat. 34.742650° N, Long. 81.116119° W
 - Universal Transverse Mercator: NAD 83
 - Name of nearest waterbody: Hooper Branch
 - Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Catawba River
 - Name of watershed or Hydrologic Unit Code (HUC): 03050103-05 Lower Catawba

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY):
 - Office (Desk) Determination. Date: 22-June-2016
 - Field Determination. Date(s): 10-April-2013

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION.

There are no “navigable waters of the U.S.” within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area. [Required]

B. CWA SECTION 404 DETERMINATION OF JURISDICTION.

There are “waters of the U.S.” within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required]

1. Waters of the U.S.
 a. Indicate presence of waters of U.S. in review area (check all that apply): ¹
 - TNWs, including territorial seas
 - Wetlands adjacent to TNWs
 - Relatively permanent waters² (RPWs) that flow directly or indirectly into TNWs
 - Non-RPWs that flow directly or indirectly into TNWs
 - Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 - Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 - Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 - Impoundments of jurisdictional waters
 - Isolated (interstate or intrastate) waters, including isolated wetlands
 b. Identify (estimate) size of waters of the U.S. in the review area:
 - Non-wetland waters: PRPW 4=2,195.5 linear feet, SRPW 5=2,126.5 linear feet, SRPW 6=497.4 linear feet, and SRPW 13=329.5 linear feet width (ft) and/or acres.
 - Wetlands: Wetland D=0.1 acre, Wetland E=1.54 acres, Wetland J=0.43 acre, and Wetland K=0.41 acres.
 - Elevation of established OHWM (if known):

2. Non-regulated waters/wetlands (check if applicable):³
 - Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional.

¹ Boxes checked below shall be supported by completing the appropriate sections in Section III below.
² For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least “seasonally” (e.g., typically 3 months).
³ Supporting documentation is presented in Section III.F.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW:
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is “adjacent”:

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY):

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4.

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:
 Watershed size: 127,983 acres; 03050103-05 Rocky Creek
 Drainage area: SRPW 5=14.6 acres
 Average annual rainfall: 46.59 inches
 Average annual snowfall: 3.1 inches

 (ii) Physical Characteristics:
 (a) Relationship with TNW:
 ☑ Tributary flows directly into TNW.
 ✗ Tributary flows through 3 tributaries before entering TNW.

 Project waters are 30 (or more) river miles from TNW.
 Project waters are 1 (or less) river miles from RPW.
 Project waters are 30 (or more) aerial (straight) miles from TNW.
 Project waters are 1 (or less) aerial (straight) miles from RPW.
 Project waters cross or serve as state boundaries. Explain:

 Identify flow route to TNW5: Hooper Branch which flows to Rocky Creek which flows to Cedar Creek Reservoir which flows to the Catawba River (Navigable Water of the US and Traditional Navigable Water).

4 Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West.
5 Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW.
Tributary stream order, if known:

(b) General Tributary Characteristics (check all that apply):

Tributary is:
☐ Natural

Tributary properties with respect to top of bank (estimate):

Average width: feet
Average depth: feet
Average side slopes: Pick List.

Primary tributary substrate composition (check all that apply):

☐ Silts
☐ Sands
☐ Concrete
☐ Cobble

☐ Gravel
☐ Muck
☐ Bedrock
☐ Vegetation. Type/ % cover:

☐ Other. Explain: According to the soil survey, the seasonal tributaries are surrounded by Iredell soils. These soils are moderately well drained, permeable clayey soils.

Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain: .

Tributary geometry: Meandering.

Tributary gradient (approximate average slope): %

(c) Flow:

Tributary provides for: Seasonal flow

Estimate average number of flow events in review area/year: 20 (or greater)

Describe flow regime: SRPW 5, SRPW 6, and SRPW 13 flow during the wetter months and after rain events. Other information on duration and volume: SRPW 5, SRPW 6, and SRPW 13 have distinct channels and clear OHWMs.

Surface flow is: Discrete and confined. Characteristics: Water flows through the channels during normal conditions.

Subsurface flow: Unknown. Explain findings: .

☐ Dye (or other) test performed:

Tributary has (check all that apply):

☐ Bed and banks
☐ OHWM6 (check all indicators that apply):
☐ clear, natural line impressed on the bank
☐ changes in the character of soil
☐ shelving
☐ vegetation matted down, bent, or absent
☐ leaf litter disturbed or washed away
☐ sediment deposition
☐ water staining
☐ other (list):

☐ Discontinuous OHWM. Explain: .

If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply):

☐ High Tide Line indicated by:
☐ Mean High Water Mark indicated by:

☐ oil or scum line along shore objects
☐ fine shell or debris deposits (foreshore)
☐ physical markings/characteristics
☐ tidal gauges
☐ other (list):

(iii) Chemical Characteristics:

Characterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.).

Explain: The watershed land use includes 70.4% forested land, 20.5% agricultural land, 6.4% urban land, 1.6% forested wetland (swamp), 0.6% barren land, and 0.5% water. Recreational uses are partially supported on Rocky

A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody’s flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break.

Ibid.
Creek due to fecal coliform bacteria excursions. Downstream there is a significant increasing trend in five-day biochemical oxygen demand.

Identify specific pollutants, if known: Possibility of pollutants from nearby railroad and road.

(iv) Biological Characteristics. Channel supports (check all that apply):
- ☑ Riparian corridor. Characteristics (type, average width): .
- ☑ Habitat for: F
 - Fish/spawn areas. Explain findings: Provides breeding grounds for aquatic species.
 - Other environmentally-sensitive species. Explain findings: .
 - Aquatic/wildlife diversity. Explain findings: Provides habitat for wildlife in the area.

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:
(a) General Wetland Characteristics:
 - Properties:
 - Wetland size: **Wetland D=0.1 acres**
 - Wetland type. Explain: **Forested**.
 - Wetland quality. Explain: **Fair**.
 - Project wetlands cross or serve as state boundaries. Explain: .

(b) General Flow Relationship with Non-TNW:
 - Flow is: **Ephemeral** flow. Explain: Water flows from wetland after heavy rains.
 - Surface flow is: **Overland sheetflow**. Characteristics: Water flows over land and through swales.
 - Subsurface flow: **Unknown**. Explain findings: .
 - Dye (or other) test performed: .

(c) Wetland Adjacency Determination with Non-TNW:
 - ☑ Directly abutting
 - ☑ Not directly abutting
 - Discrete wetland hydrologic connection. Explain: .
 - Ecological connection. Explain: Water flows overland and through swales to SRPW 5.
 - Separated by berm/barrier. Explain: .

(d) Proximity (Relationship) to TNW:
 - Project wetlands are **30 (or more)** river miles from TNW.
 - Project waters are **30 (or more)** aerial (straight) miles from TNW.
 - Flow is from: **Wetland to navigable waters**.
 - Estimate approximate location of wetland as within the Pick List floodplain.

(ii) Chemical Characteristics:
 - Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain: The watershed land use includes 70.4% forested land, 20.5% agricultural land, 6.4% urban land, 1.6% forested wetland (swamp), 0.6% barren land, and 0.5% water. Recreational uses are partially supported on Rocky Creek due to fecal coliform bacteria excursions. Downstream there is a significant increasing trend in five-day biochemical oxygen demand.
 - Identify specific pollutants, if known: Possible pollutants from nearby railroad and roads.

(iii) Biological Characteristics. Wetland supports (check all that apply):
 - ☑ Riparian buffer. Characteristics (type, average width): .
 - ☑ Vegetation type/percent cover. Explain: .
 - ☑ Habitat for: F
 - Fish/spawn areas. Explain findings: Provides breeding grounds for aquatic species.
 - Other environmentally-sensitive species. Explain findings: .
 - Aquatic/wildlife diversity. Explain findings: Provides habitat for wildlife in the area.

3. Characteristics of all wetlands adjacent to the tributary (if any)
 - All wetland(s) being considered in the cumulative analysis: 1
 - Approximately (**0.1**) acres in total are being considered in the cumulative analysis.
For each wetland, specify the following:

<table>
<thead>
<tr>
<th>Directly abuts? (Y/N)</th>
<th>Size (in acres)</th>
<th>Directly abuts? (Y/N)</th>
<th>Size (in acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Summarize overall biological, chemical and physical functions being performed: **Wetland D is abutting SRPW 5.** This wetland and the RPW are collectively performing biological, chemical, and physical functions that relate to the TNW. The wetland is less than 1 mile from the nearest perennial RPW. This wetland and seasonal RPW are located on a site that is close to a major road and railroad. The site also has several areas cleared for fields. The wetland is forested. The wetland and tributary provide breeding grounds for aquatic species and habitat for wildlife in the area. They help to filter pollutants and run-off before they travel downstream to the TNW. They also perform flow maintenance functions with storage of flood water during times of heavy rain and during the wetter months.

C. **SIGNIFICANT NEXUS DETERMINATION**

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below:

1. **Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs.** Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D:

2. **Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs.** Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. **Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW.** Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

Documentation for the Record only: Significant nexus findings for seasonal RPWs and/or wetlands abutting seasonal RPWs: Wetland D is abutting SRPW 5. This wetland and the RPW are collectively performing biological, chemical, and physical functions that relate to the TNW. The wetland is less than 1 mile from the nearest perennial RPW. This wetland and seasonal RPW are located on a site that is close to a major road and railroad. The site also has several areas cleared for fields. The wetland is forested. The wetland and tributary provide breeding grounds for aquatic species and habitat for wildlife in the area. They help to filter pollutants and run-off before they travel downstream to the TNW. They also perform flow maintenance functions with storage of flood water during times of heavy rain and during the wetter months. Based on the collective functions
described above and their importance to the biological, chemical, and physical integrity of the downstream TNW, it has been determined there is a significant nexus between the tributaries to the downstream TNW.

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY):

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs: linear feet width (ft), Or; acres.
 - Wetlands adjacent to TNWs: acres.

2. RPWs that flow directly or indirectly into TNWs.
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial: PRPW 4 is a perennial tributary. It is shown as a blue line on the topo and as perennial on the soil survey. This tributary was observed flowing during flagging and during the Corps site visit. It has a clear OHWM and distinct channel. Stream characteristics observed and available data led this office to conclude the tributary has a perennial flow regime.

 - Tributaries of TNW where tributaries have continuous flow “seasonally” (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: SRPW 5, SRPW 6, and SRPW 13 are seasonal tributaries. SRPW 5 is shown as a dashed blue line on the topo and as seasonal on the soil survey. SRPW 6 and SRPW 13 are shown as contours on the topo map and as seasonal on the survey survey. Stream characteristics observed and available data led this office to conclude the tributaries have a seasonal flow regime.

 Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters: PRPW 4=2,195.5 linear feet, SRPW 5=2,126.5 linear feet, and SRPW 13=329.5 linear feet width (ft).
 - Other non-wetland waters: acres.

3. Non-RPWs8 that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide estimates for jurisdictional waters within the review area (check all that apply):
 - Tributary waters: linear feet width (ft).
 - Other non-wetland waters: acres.

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands directly abutting RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: Wetland E, Wetland J, and Wetland K are directly abutting PRPW 4.

 - Wetlands directly abutting an RPW where tributaries typically flow “seasonally.” Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: Wetland D is directly abutting SRPW 5.

 Provide acreage estimates for jurisdictional wetlands in the review area: Wetland D=0.1 acre, Wetland E=1.54 acres, Wetland J=0.43 acre, and Wetland K=0.41 acres.

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetlands in the review area: acres.

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
 - Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

8See Footnote # 3.
Provide estimates for jurisdictional wetlands in the review area: __________ acres.

7. Impoundments of jurisdictional waters.9
 As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional.
 □ Demonstrate that impoundment was created from “waters of the U.S.” or
 □ Demonstrate that water meets the criteria for one of the categories presented above (1-6), or
 □ Demonstrate that water is isolated with a nexus to commerce (see E below).
 Explain:

E. ISOLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE,
DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY
SUCH WATERS (CHECK ALL THAT APPLY):10
 □ which are or could be used by interstate or foreign travelers for recreational or other purposes.
 □ from which fish or shellfish are or could be taken and sold in interstate or foreign commerce.
 □ which are or could be used for industrial purposes by industries in interstate commerce.
 □ Interstate isolated waters. Explain: __________.
 □ Other factors. Explain: __________.

Identify water body and summarize rationale supporting determination: __________.

Provide estimates for jurisdictional waters in the review area (check all that apply):
□ Tributary waters: __________ linear feet, __________ width (ft).
□ Other non-wetland waters: __________ acres.
 Identify type(s) of waters: __________.
□ Wetlands: __________ acres.

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY):
 □ If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers
 Wetland Delineation Manual and/or appropriate Regional Supplements.
 □ Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce.
 □ Prior to the Jan 2001 Supreme Court decision in “SWANCC,” the review area would have been regulated based solely on the
 “Migratory Bird Rule” (MBR).
 □ Waters do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction. Explain: __________.
 □ Other: (explain, if not covered above): __________.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR
factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional
judgment (check all that apply):
□ Non-wetland waters (i.e., rivers, streams): __________ linear feet, __________ width (ft).
□ Lakes/ponds: __________ acres.
□ Other non-wetland waters: __________ acres. List type of aquatic resource: __________.
□ Wetlands: __________ acres.

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such
a finding is required for jurisdiction (check all that apply):
□ Non-wetland waters (i.e., rivers, streams): __________ linear feet, __________ width (ft).
□ Lakes/ponds: __________ acres.
□ Other non-wetland waters: __________ acres. List type of aquatic resource: __________.
□ Wetlands: __________ acres.

SECTION IV: DATA SOURCES.

A. SUPPORTING DATA. Data reviewed for JD (check all that apply) - checked items shall be included in case file and, where checked
 and requested, appropriately reference sources below):
 ☑ Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: S&ME.
 ☑ Data sheets prepared/submitted by or on behalf of the applicant/consultant.
 ☑ Office concurs with data sheets/delineation report. This office agrees with the conclusions of the data sheets.
 ☑ Office does not concur with data sheets/delineation report.
 ☑ Data sheets prepared by the Corps: __________.

9 To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook.
10 Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for
review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos.
B. ADDITIONAL COMMENTS TO SUPPORT JD: The aquatic resources documented on this form include 1 perennial RPW with an 3 abutting wetlands and 3 seasonal RPW with an abutting wetland. RPWs and abutting wetlands are jurisdictional according to RGL 07-01. A significant nexus determination was performed for the seasonal RPW and abutting wetland. Based on the documentation provided in Section III, C of this form, the nexus is significant. The waters documented on this form are waters of the U.S. and are within the jurisdiction of the Clean Water Act.
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION
A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): 22-June-2016
B. DISTRICT OFFICE, FILE NAME, AND NUMBER: JD Form 5 of 5; SAC 2013-00371 Tract P
C. PROJECT LOCATION AND BACKGROUND INFORMATION:
 State: South Carolina County/parish/borough: Chester City: Chester
 Center coordinates of site (lat/long in degree decimal format): Lat. 34.742650° N, Long. 81.116119° W.
 Universal Transverse Mercator: NAD 83
 Name of nearest waterbody: Hooper Branch
 Name of nearest Traditional Navigable Water (TNW) Into which the aquatic resource flows: Catawba River
 Name of watershed or Hydrologic Unit Code (HUC): 03050103-05 Lower Catawba
 Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request.
 Check if other sites (e.g., offsite mitigation sites, disposal sites, etc…) are associated with this action and are recorded on a different JD form.
D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY):
 Office (Desk) Determination. Date: 22-June-2016
 Field Determination. Date(s): 10-April-2013

SECTION II: SUMMARY OF FINDINGS
A. RHA SECTION 10 DETERMINATION OF JURISDICTION.
 There Are no “navigable waters of the U.S.” within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area. [Required]
 Waters subject to the ebb and flow of the tide.
 Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce. Explain:

B. CWA SECTION 404 DETERMINATION OF JURISDICTION.
 There Are “waters of the U.S.” within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required]

1. Waters of the U.S.
 a. Indicate presence of waters of U.S. in review area (check all that apply): 1
 - TNWs, including territorial seas
 - Wetlands adjacent to TNWs
 - Relatively permanent waters² (RPWs) that flow directly or indirectly into TNWs
 - Non-RPWs that flow directly or indirectly into TNWs
 - Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 - Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 - Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 - Impoundments of jurisdictional waters
 - Isolated (interstate or intrastate) waters, including isolated wetlands
 b. Identify (estimate) size of waters of the U.S. in the review area:
 Non-wetland waters: PRPW 9=376 linear feet, SRPW 10=351.9 linear feet, PRPW 11=1,319.7 linear feet, and SRPW 12=182.6 linear feet and Impoundment 1=1.53 acres.
 Wetlands: Wetland C=0.16 acres.
 Elevation of established OHWM (if known): .

2. Non-regulated waters/wetlands (check if applicable):³
 - Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional. Explain: .

1 Boxes checked below shall be supported by completing the appropriate sections in Section III below.
2 For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least “seasonally” (e.g., typically 3 months).
3 Supporting documentation is presented in Section III.F.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: .
 Summarize rationale supporting determination: .

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is “adjacent”: .

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY):

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4.

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offshore. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed size: 127,983 acres ; 03050103-05 Rocky Creek
 Drainage area:
 Average annual rainfall: 46.59 inches
 Average annual snowfall: 3.1 inches
 (ii) Physical Characteristics:
 (a) Relationship with TNW:
 ☑ Tributary flows directly into TNW.
 ☑ Tributary flows through 3 tributaries before entering TNW.
 Project waters are 30 (or more) river miles from TNW.
 Project waters are 1 (or less) river miles from RPW.
 Project waters are 30 (or more) aerial (straight) miles from TNW.
 Project waters are 1 (or less) aerial (straight) miles from RPW.
 Project waters cross or serve as state boundaries. Explain: .
 Identify flow route to TNW5: Hooper Branch which flows to Rocky Creek which flows to Cedar Creek Reservoir which flows to the Catawba River (Navigable Water of the US and Traditional Navigable Water).

4 Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West.
5 Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW.
Tributary stream order, if known:

(b) General Tributary Characteristics (check all that apply):

- **Tributary** is:
 - [] Natural
 - [] Artificial (man-made). Explain:
 - [] Manipulated (man-altered). Explain:

Tributary properties with respect to top of bank (estimate):
- Average width: feet
- Average depth: feet
- Average side slopes: **Pick List**

Primary tributary substrate composition (check all that apply):
- [] Silts
- [] Sands
- [] Concrete
- [] Cobbles
- [] Gravel
- [] Muck
- [] Bedrock
- [] Vegetation. Type/cover:
 - [] Other. Explain: **According to the soil survey, the seasonal RPWs are surrounded by Iredell soils. These soils are moderately well drained, permeable clayey soils.**

Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain:

Presence of run/riffle/pool complexes. Explain:

Tributary geometry: **Meandering.**

Tributary gradient (approximate average slope): %

(c) **Flow:**

- **Tributary provides for:** **Seasonal flow**
- **Estimate average number of flow events in review area/year:** 20 (or greater)
- **Describe flow regime:** SRPW 10 and SRW 12 flow during the wetter moneths and after rain events. Other information on duration and volume: SRPW 10 and SRPW 12 have distinct channels and clear OHWMs.

Surface flow is: **Discrete and confined.** Characteristics: Water flows through channel during normal conditions.

Subsurface flow: **Unknown.** Explain findings:

- [] Dye (or other) test performed:

Tributary has (check all that apply):
- [] Bed and banks
- [] OHWM (check all indicators that apply):
 - [] clear, natural line impressed on the bank
 - [] changes in the character of soil
 - [] shelving
 - [] vegetation matted down, bent, or absent
 - [] leaf litter disturbed or washed away
 - [] sediment deposition
 - [] water staining
 - [] other (list):
 - [] Discontinuous OHWM. Explain:

If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply):
- [] High Tide Line indicated by:
 - [] oil or scum line along shore objects
 - [] fine shell or debris deposits (foreshore)
 - [] physical markings/characteristics
 - [] tidal gauges
 - [] other (list):

Mean High Water Mark indicated by:
- [] survey to available datum;
- [] physical markings;
- [] vegetation lines/changes in vegetation types.

(iii) **Chemical Characteristics:**

Characterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.).

Explain: The watershed land use includes 70.4% forested land, 20.5% agricultural land, 6.4% urban land, 1.6% forested wetland (swamp), 0.6% barren land, and 0.5% water. Recreational uses are partially supported on Rocky Creek due to fecal coliform bacteria excursions. Downstream there is a significant increasing trend in five-day biochemical oxygen demand.

6 A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody’s flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break.

7 Ibid.
Identify specific pollutants, if known: Possibility of pollutants from nearby railroad and road.

(iv) Biological Characteristics. Channel supports (check all that apply):
- Riparian corridor. Characteristics (type, average width):
- Wetland fringe. Characteristics:
- Habitat for:
 - Federally Listed species. Explain findings:
 - Fish/spawn areas. Explain findings: Provides breeding grounds for aquatic species in the area.
 - Other environmentally-sensitive species. Explain findings:
 - Aquatic/wildlife diversity. Explain findings: Provides habitat for wildlife in the area.

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:
(a) General Wetland Characteristics:
Properties:
- Wetland size: acres
- Wetland type. Explain:
- Wetland quality. Explain:
- Project wetlands cross or serve as state boundaries. Explain:

(b) General Flow Relationship with Non-TNW:
Flow is: Pick List. Explain:
Surface flow is: Pick List
Characteristics:
Subsurface flow: Pick List. Explain findings:
- Dye (or other) test performed:

(c) Wetland Adjacency Determination with Non-TNW:
- Directly abutting
- Not directly abutting
- Discrete wetland hydrologic connection. Explain:
- Ecological connection. Explain:
- Separated by berm/barrier. Explain:

(d) Proximity (Relationship) to TNW
Project wetlands are Pick List river miles from TNW.
Project waters are Pick List aerial (straight) miles from TNW.
Flow is from: Pick List.
Estimate approximate location of wetland as within the Pick List floodplain.

(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain:
Identify specific pollutants, if known:

(iii) Biological Characteristics. Wetland supports (check all that apply):
- Riparian buffer. Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
- Habitat for:
 - Federally Listed species. Explain findings:
 - Fish/spawn areas. Explain findings:
 - Other environmentally-sensitive species. Explain findings:
 - Aquatic/wildlife diversity. Explain findings:

3. Characteristics of all wetlands adjacent to the tributary (if any)
All wetland(s) being considered in the cumulative analysis: Pick List
Approximately () acres in total are being considered in the cumulative analysis.
For each wetland, specify the following:

<table>
<thead>
<tr>
<th>Directly abuts? (Y/N)</th>
<th>Size (in acres)</th>
<th>Directly abuts? (Y/N)</th>
<th>Size (in acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Summarize overall biological, chemical and physical functions being performed: .

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below:

1. **Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs.** Explain findings of presence or absence of significant nexus below, based on the tributary itself; then go to Section III.D:

2. **Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs.** Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. **Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW.** Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

Documentation for the Record only: Significant nexus findings for seasonal RPWs and/or wetlands abutting seasonal RPWs: SRPW 10 and SRPW 12 are located in the southern part of the tract. They are performing a variety of functions that relate to the biological, chemical, and physical integrity of the TNW. These seasonal tributaries are located on a track that is adjacent to a major road and railway. These tributaries provide breeding grounds for aquatic species and habitat for wildlife in the area. These tributaries also help to filter pollutants and run-off from the nearby road and railway before they flow downstream to the TNW. The tributaries help store water during times of heavy rain and the wetter months. Based on the collective functions described above and their importance to the biological, chemical, and physical integrity of the downstream TNW, it has been determined there is a significant nexus between the tributaries to the downstream TNW.

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY):

1. **TNWs and Adjacent Wetlands.** Check all that apply and provide size estimates in review area:
2. **RPs** that flow directly or indirectly into TNWs.

- Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial: PRPW 9 and PRPW 11 are perennial tributaries. They are shown as contours on the topo map and on the soil survey. These tributaries were observed flowing during flagging and during the Corps site visit. They have a clear OHWM and distinct channel. Stream characteristics observed and available data led this office to conclude the tributaries have a perennial flow regime.

- Tributaries of TNW where tributaries have continuous flow “seasonally” (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: SRPW 10 and SPRPW 12 are seasonal tributaries. They are shown as contours on the topo map. Stream characteristics observed and available data led this office to conclude these tributaries have a seasonal flow regime.

Provide estimates for jurisdictional waters in the review area (check all that apply):
- Tributary waters: PRPW 9=376 linear feet, SRPW 10=351.9 linear feet, PRPW 11=1,319.7 linear feet, and SRPW 12=182.6 linear feet width (ft).
- Other non-wetland waters: acres.
- Identify type(s) of waters:.

3. **Non-RPs** that flow directly or indirectly into TNWs.

- Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional waters within the review area (check all that apply):
- Tributary waters: linear feet width (ft).
- Other non-wetland waters: acres.
- Identify type(s) of waters:.

4. **Wetlands directly abutting an RPW** that flow directly or indirectly into TNWs.

- Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

- Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: Wetland C directly abuts PRPW 11.

- Wetlands directly abutting an RPW where tributaries typically flow “seasonally.” Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW:.

Provide acreage estimates for jurisdictional wetlands in the review area: Wetland C=0.1 acres.

5. **Wetlands adjacent to but not directly abutting an RPW** that flow directly or indirectly into TNWs.

- Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetlands in the review area: acres.

6. **Wetlands adjacent to non-RPs** that flow directly or indirectly into TNWs.

- Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetlands in the review area: acres.

7. **Impoundments of jurisdictional waters.**

- As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional.

- Demonstrate that impoundment was created from “waters of the U.S.” or

- Demonstrate that water meets the criteria for one of the categories presented above (1-6), or

- Demonstrate that water is isolated with a nexus to commerce (see E below).

Explain: Impoundment 1 is an impoundment of PRPW 11. PRPW 11 is documented above as perennial

8See Footnote # 3.
9 To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook.
E. ISOLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY SUCH WATERS (CHECK ALL THAT APPLY):

- which are or could be used by interstate or foreign travelers for recreational or other purposes.
- from which fish or shellfish are or could be taken and sold in interstate or foreign commerce.
- which are or could be used for industrial purposes by industries in interstate commerce.
- Interstate isolated waters. Explain: .
- Other factors. Explain: .

Identify water body and summarize rationale supporting determination: .

Provide estimates for jurisdictional waters in the review area (check all that apply):
- Tributary waters: linear feet width (ft).
- Other non-wetland waters: acres.
- Wetlands: acres.

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY):
- If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements.
- Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce.
- Prior to the Jan 2001 Supreme Court decision in “SWANCC,” the review area would have been regulated based solely on the “Migratory Bird Rule” (MBR).
- Waters do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction. Explain: .
- Other: (explain, if not covered above): .

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):
- Non-wetland waters (i.e., rivers, streams): linear feet width (ft).
- Lakes/ponds: acres.
- Other non-wetland waters: acres. List type of aquatic resource: .
- Wetlands: acres.

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):
- Non-wetland waters (i.e., rivers, streams): linear feet width (ft).
- Lakes/ponds: acres.
- Other non-wetland waters: acres. List type of aquatic resource: .
- Wetlands: acres.

SECTION IV: DATA SOURCES.

A. SUPPORTING DATA. Data reviewed for JD (check all that apply) - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):
- Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: S&ME.
- Data sheets prepared/submitted by or on behalf of the applicant/consultant.
- Office concurs with data sheets/delineation report. This office agrees with the conclusions of the data sheets.
- Office does not concur with data sheets/delineation report.
- Data sheets prepared by the Corps: .
- Corps navigable waters’ study: 1977 Navigability Study.
- USGS NHD data.
- USGS 8 and 12 digit HUC maps.
- U.S. Geological Survey map(s). Cite scale & quad name: 1:24,000 Richburg.
- USDA Natural Resources Conservation Service Soil Survey. Citation: Chester County Soil Map 13-Chewacla, Iredell, Mecklenburg.
- National wetlands inventory map(s). Cite name: PUBHh.
- State/Local wetland inventory map(s): .
- FEMA/FIRM maps: .
- 100-year Floodplain Elevation is: (National Geodectic Vertical Datum of 1929)

10 Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos.
B. ADDITIONAL COMMENTS TO SUPPORT JD: The aquatic resources documented on this form include 2 perennial RPWs with an abutting wetland and impoundment and 2 seasonal RPWs. RPWs and abutting wetlands are jurisdictional according to RGL 07-01. A significant nexus determination was performed for the seasonal RPW and abutting wetland. Based on the documentation provided in Section III, C of this form, the nexus is significant. The waters documented on this form are waters of the U.S. and are within the jurisdiction of the Clean Water Act.