This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): June 18, 2015

B. DISTRICT OFFICE, FILE NAME, AND NUMBER: JD Form 1 of 2; SAC 2015-00354-4S - Enoch Thomas Lilly Tract

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
 State: South Carolina County/parish/borough: Horry County City: Aynor
 Center coordinates of site (lat/long in degree decimal format): Lat. 33.916131° N, Long. -79.152932° W.
 Universal Transverse Mercator:
 Name of nearest waterbody: Palmetto Swamp
 Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: The Aquatic Resource (Isolated Wetland) documented on this basis form was determined to be confined within the boundaries of the project area and therefore does not flow into a TNW.
 Name of watershed or Hydrologic Unit Code (HUC): Little Pee Dee HUC: 030402-04
 ☒ Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request.
 ☑ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc…) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY):
 ☐ Office (Desk) Determination. Date:
 ☒ Field Determination. Date(s): May 05, 2015 and May 21, 2015

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION.
 There are no “navigable waters of the U.S.” within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area. [Required]
 ☐ Waters subject to the ebb and flow of the tide.
 ☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce. Explain: .

B. CWA SECTION 404 DETERMINATION OF JURISDICTION.
 There are no “waters of the U.S.” within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required]

 1. Waters of the U.S.
 a. Indicate presence of waters of U.S. in review area (check all that apply):
 ☒ TNWs, including territorial seas
 ☒ Wetlands adjacent to TNWs
 ☒ Relatively permanent waters\(^2\) (RPWs) that flow directly or indirectly into TNWs
 ☒ Non-RPWs that flow directly or indirectly into TNWs
 ☒ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☒ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☒ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☒ Impoundments of jurisdictional waters
 ☒ Isolated (interstate or intrastate) waters, including isolated wetlands
 b. Identify (estimate) size of waters of the U.S. in the review area:
 Non-wetland waters: linear feet: width (ft) and/or acres.
 Wetlands: acres.
 c. Limits (boundaries) of jurisdiction based on: Pick List, Pick List, Pick List
 Elevation of established OHWM (if known): .

 2. Non-regulated waters/wetlands (check if applicable): \(^3\) [Including potentially jurisdictional features that upon assessment are NOT waters or wetlands]

\(^1\) Boxes checked below shall be supported by completing the appropriate sections in Section III below.

\(^2\) For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least “seasonally” (e.g., typically 3 months).

\(^3\) Supporting documentation is presented in Section III.F.
Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional.

Explain: A potentially jurisdictional wetland located within the project area was determined to be non-jurisdictional due to the lack of discernable or traceable outfall connections to other Waters of the US. Although in itself the wetland meets the criteria set forth in the 1987 Wetland Delieation Manual and the 2010 Coastal Plain Supplement, water on site drains into the wetland. Site visits conducted on 5/5/2015 and 5/21/2015 revealed that the wetland onsite is completely surrounded by soils that do not meet any hydric soil indicators outlined in the "Field Indicators of Hydric Soils in the United States" guide, version 7.0, 2010, and therefor determined to be surrounded by uplands disrupting any possible connection to other Waters of the US. This wetland was determined not to be adjacent to any waters of the US.

A non-jurisdictional ditch is located on-site. This ditch bysects the site along the southeast edge of an actively farmed field. It travels south west to the property boundary were it makes a 90 degree turn and travels along the northwest boundary of the farm field and then off-site. This ditch is determined to have been excavated entirely from uplands and to drain only uplands. This ditch does not abut any wetlands located within the project area and therefore does not provide a conveyance for the delineated isolated wetland. This ditch is separated from the wetlands on site by soils that do not meet any hydric soil indicators outlined in the "Field Indicators of Hydric Soils in the United States" guide, version 7.0, 2010, and therefor determined to be surrounded by uplands disrupting any possible connection to other Waters of the US. The onsite non-jurisdictional, upland excavated ditch was determined not to be a tributary and does not provide a hydrologic connection between the isolated wetland delineated on site to any offsite downstream tributary.

SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: .

 Summarize rationale supporting determination: .

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is “adjacent”: .

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY):

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4.

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

4 Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West.
(i) General Area Conditions:
Watershed size: Pick List
Drainage area: Pick List
Average annual rainfall: inches
Average annual snowfall: inches

(ii) Physical Characteristics:
(a) Relationship with TNW:
☐ Tributary flows directly into TNW.
☐ Tributary flows through Pick List tributaries before entering TNW.

Project waters are Pick List river miles from TNW.
Project waters are Pick List river miles from RPW.
Project waters are Pick List aerial (straight) miles from TNW.
Project waters are Pick List aerial (straight) miles from RPW.
Project waters cross or serve as state boundaries. Explain:.

Identify flow route to TNW\(^5\):.
Tributary stream order, if known:.

(b) General Tributary Characteristics (check all that apply):
Tributary is: ☐ Natural
☐ Artificial (man-made). Explain:.
☐ Manipulated (man-altered). Explain:.

Tributary properties with respect to top of bank (estimate):
Average width: feet
Average depth: feet
Average side slopes: Pick List.

Primary tributary substrate composition (check all that apply):
☐ Silts ☐ Sands ☐ Concrete
☐ Cobbles ☐ Gravel ☐ Muck
☐ Bedrock ☐ Vegetation. Type/% cover:
☐ Other. Explain:.

Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain:.
Presence of run/riffle/pool complexes. Explain:.
Tributary geometry: Pick List.
Tributary gradient (approximate average slope): %

(c) Flow:
Tributary provides for: Pick List
Estimate average number of flow events in review area/year: Pick List
Describe flow regime:.

Other information on duration and volume:.
Surface flow is: Pick List. Characteristics:.
Subsurface flow: Pick List. Explain findings:.
☐ Dye (or other) test performed:.

Tributary has (check all that apply):
☐ Bed and banks
☐ OHWM\(^6\) (check all indicators that apply):
☐ clear, natural line impressed on the bank ☐ the presence of litter and debris
☐ changes in the character of soil ☐ destruction of terrestrial vegetation
☐ shelving ☐ the presence of wrack line
☐ vegetation matted down, bent, or absent ☐ sediment sorting
☐ leaf litter disturbed or washed away ☐ scour
☐ sediment deposition ☐ multiple observed or predicted flow events
☐ water staining ☐ abrupt change in plant community

\(^5\) Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW.
\(^6\) A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody’s flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break.
other (list):
Discontinuous OHWM. Explain:

If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply):
High Tide Line indicated by:
Mean High Water Mark indicated by:
oil or scum line along shore objects
fine shell or debris deposits (foreshore)
physical markings
physical markings/characteristics
vegetation lines/changes in vegetation types.
tidal gauges
other (list):

(iii) Chemical Characteristics:
Characterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.). Explain:
Identify specific pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):
Riparian corridor. Characteristics (type, average width):
Wetland fringe. Characteristics:
Habitat for:
Federally Listed species. Explain findings:
Fish/spawn areas. Explain findings:
Other environmentally-sensitive species. Explain findings:
Aquatic/wildlife diversity. Explain findings:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:
(a) General Wetland Characteristics:
Properties:
Wetland size: acres
Wetland type. Explain:
Wetland quality. Explain:
Project wetlands cross or serve as state boundaries. Explain:
(b) General Flow Relationship with Non-TNW:
Flow is: Pick List. Explain:
Surface flow is: Pick List
Characteristics:
Subsurface flow: Pick List. Explain findings:
Dye (or other) test performed:
(c) Wetland Adjacency Determination with Non-TNW:
Directly abutting
Not directly abutting
Discrete wetland hydrologic connection. Explain:
Ecological connection. Explain:
Separated by berm/barrier. Explain:
(d) Proximity (Relationship) to TNW
Project wetlands are Pick List river miles from TNW.
Project waters are Pick List aerial (straight) miles from TNW.
Flow is from: Pick List.
Estimate approximate location of wetland as within the Pick List floodplain.

(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain:
Identify specific pollutants, if known:

(iii) Biological Characteristics. Wetland supports (check all that apply):
Riparian buffer. Characteristics (type, average width):

7Ibid.
3. Characteristics of all wetlands adjacent to the tributary (if any)
 All wetland(s) being considered in the cumulative analysis: Pick List
 Approximately (______) acres in total are being considered in the cumulative analysis.

 For each wetland, specify the following:

<table>
<thead>
<tr>
<th>Directly abuts? (Y/N)</th>
<th>Size (in acres)</th>
<th>Directly abuts? (Y/N)</th>
<th>Size (in acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 Summarize overall biological, chemical and physical functions being performed: .

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to, the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g., between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below:

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D:

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

Documentation for the Record only: Significant nexus findings for seasonal RPWs and/or wetlands abutting seasonal RPWs:
D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY):

1. **TNWs and Adjacent Wetlands.** Check all that apply and provide size estimates in review area:
 - TNWs: linear feet width (ft), Or, acres.
 - Wetlands adjacent to TNWs: acres.

2. **RPWs that flow directly or indirectly into TNWs.**
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial:
 - Tributaries of TNW where tributaries have continuous flow “seasonally” (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters: linear feet width (ft).
 - Other non-wetland waters: acres.
 - Identify type(s) of waters:

3. **Non-RPWs⁸ that flow directly or indirectly into TNWs.**
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide estimates for jurisdictional waters within the review area (check all that apply):
 - Tributary waters: linear feet width (ft).
 - Other non-wetland waters: acres.
 - Identify type(s) of waters:

4. **Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.**
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow “seasonally.” Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW:
 - Provide acreage estimates for jurisdictional wetlands in the review area: acres.

5. **Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs.**
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetlands in the review area: acres.

6. **Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.**
 - Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide estimates for jurisdictional wetlands in the review area: acres.

7. **Impoundments of jurisdictional waters.⁹**
 - As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional.
 - Demonstrate that impoundment was created from “waters of the U.S.,” or
 - Demonstrate that water meets the criteria for one of the categories presented above (1-6), or
 - Demonstrate that water is isolated with a nexus to commerce (see E below).

⁸See Footnote # 3.
⁹To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook.
E. ISOLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY SUCH WATERS (CHECK ALL THAT APPLY):
- which are or could be used by interstate or foreign travelers for recreational or other purposes.
- from which fish or shellfish are or could be taken and sold in interstate or foreign commerce.
- which are or could be used for industrial purposes by industries in interstate commerce.
- Interstate isolated waters. Explain:
- Other factors. Explain:

Identify water body and summarize rationale supporting determination:

Provide estimates for jurisdictional waters in the review area (check all that apply):

- Tributary waters: linear feet width (ft).
- Other non-wetland waters: acres.
- Wetlands: acres.

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY):

- If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements.
- Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce.
- Prior to the Jan 2001 Supreme Court decision in "SWANCC," the review area would have been regulated based solely on the "Migratory Bird Rule" (MBR).
- Waters do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction. Explain:
- Other: (explain, if not covered above): The project area contains one upland excavated ditch that was determined not to be a tributary and does not provide a conveyance for the delineated isolated wetland to any waters of the US located offsite. The onsite isolated wetland is separated from the non-jurisdictional ditch by uplands; no drainage patterns were observed from the isolated wetland to the non-jurisdictional ditch.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non-wetland waters (i.e., rivers, streams): linear feet width (ft).
- Lakes/ponds: acres.
- Other non-wetland waters: acres. List type of aquatic resource:
- Wetlands: acres.

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters (i.e., rivers, streams): linear feet width (ft).
- Lakes/ponds: acres.
- Other non-wetland waters: acres. List type of aquatic resource:
- Wetlands: acres.

SECTION IV: DATA SOURCES.

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: The project area is depicted on sheet 1-2 of 2 of a sketch prepared by the Corps titled "SAC 2015-00354-4S / Enoch Thomas Lilly Tract / Horry County, SC" and dated May 26, 2015.
- Data sheets prepared/submitted by or on behalf of the applicant/consultant.
- Office concurs with data sheets/delineation report.
- Office does not concur with data sheets/delineation report.
- Data sheets prepared by the Corps: May 05, 2015 and May 21, 2015.
- Corps navigable waters’ study:
- U.S. Geological Survey Hydrologic Atlas:
- USGS NHD data.
- USGS 8 and 12 digit HUC maps.

18 Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos.
U.S. Geological Survey map(s). Cite scale & quad name: Horry Quad; USGS topographic survey information within Horry quad depicts the project area as a combination of cleared and forested uplands that do not contain any blue line features or other symbols that would typically represent a WOUS.

USDA Natural Resources Conservation Service Soil Survey. Citation: Horry County Soil Sheet # 42; Horry County Soil Survey information depicts the project area as being comprised of the following soil types: Suffolk, Goldsboro, and Woodington. Suffolk is a partially hydric loamy fine sand with 0-2% slopes. Goldsboro is a partially hydric loamy fine sand with 0-2% slopes. Woodington is a 100% hydric fine sandy loam.

National wetlands inventory map(s). Cite name: U21, U42P, PFO4/IB; The NWIs depict the project area as largely upland cropland and/or pasture with an inclusion of Saturated Palustrine forested in the southwest corner and upland evergreen forest in the remainder of the project area.

State/Local wetland inventory map(s):
FEMA/FIRM maps:
100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)
Photographs: Aerial (Name & Date): 99:12026:63 and SCDNR 2006. or Other (Name & Date): Photos taken on-site by the Corps dated 5/5/2015 and 5/21/2015.
Previous determination(s). File no. and date of response letter:
Applicable/supporting case law:
Applicable/supporting scientific literature:
Other information (please specify):

B. ADDITIONAL COMMENTS TO SUPPORT JD: This form addresses an approximately 18.55 acre tract that contains 0.11 acres of wetlands that lack a hydrologic connection to other waters of the United States. The site also contains approximately 2.8 acres of jurisdictional wetlands that are addressed on another form (SAC 2015-00354-4S Basis Form 2 of 2).

The wetland located within the project area was determined to be non-jurisdictional due to the lack of discernible or traceable outfall connections to other Waters of the US. Although in itself the wetland meets the criteria set forth in the 1987 Wetland Delineation Manual and the 2010 Coastal Plain Supplement, water on site was found to drain into the wetland. Site visits conducted on 5/5/2015 and 5/21/2015 revealed that the wetland onsite is completely encompassed by soils that do not meet the hydric soil criteria, and therefore determined to be surrounded by uplands with no drainage patterns observed outside the delineated wetland boundary draining to the onsite non-jurisdictional ditch.

A non-jurisdictional ditch is located on-site. This ditch bisects the site along the southeast edge of an actively farmed field. It travels south west to the property boundary where it makes a 90 degree turn and travels along the northwest boundary of the farm field and then off-site. This ditch is determined to have been excavated entirely from uplands and to drain only uplands. This ditch is not adjacent to nor does it abut wetlands on-site. This ditch is separated from the wetlands on site by soils that do not meet the hydric soil criteria, and therefore determined to be surrounded by uplands disrupting any possible connection to other Waters of the US. The onsite non-jurisdictional, upland excavated ditch was determined not to be a tributary and does not provide a hydrologic connection between the isolated wetland delineated on site to any offsite downstream tributary.
SECTION I: BACKGROUND INFORMATION
A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): June 18, 2015

B. DISTRICT OFFICE, FILE NAME, AND NUMBER: JD Form 2 of 2; CESAC-RD-NE; SAC 2015-00354-4S Enoch Thomas Lilly Tract

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
State: South Carolina County/parish/borough: Horry City: Aynor
Center coordinates of site (lat/long in degree decimal format): Lat. 33.916131° N, Long. -79.152932° W.
Universal Transverse Mercator:
Name of nearest waterbody: Palmetto Swamp
Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Little Pee Dee River
Name of watershed or Hydrologic Unit Code (HUC): Little Pee Dee River HUC: 030402_04
☐ Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request.
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc…) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY):
☐ Office (Desk) Determination. Date:
☒ Field Determination. Date(s): May 05, 2015 and May 21, 2015

SECTION II: SUMMARY OF FINDINGS
A. RHA SECTION 10 DETERMINATION OF JURISDICTION.
There Are no “navigable waters of the U.S.” within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area. [Required]
☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce. Explain: .

B. CWA SECTION 404 DETERMINATION OF JURISDICTION.
There Are “waters of the U.S.” within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required]

1. Waters of the U.S.
 a. Indicate presence of waters of U.S. in review area (check all that apply): 1
 □ TNWs, including territorial seas
 □ Wetlands adjacent to TNWs
 □ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☒ Non-RPWs that flow directly or indirectly into TNWs
 ☒ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 □ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☒ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 □ Impoundments of jurisdictional waters
 □ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area:
 Non-wetland waters: linear feet: width (ft) and/or acres.
 Wetlands: 2.8 acres.

 c. Limits (boundaries) of jurisdiction based on: 1987 Delineation Manual, Pick List, Pick List
 Elevation of established OHWM (if known): .

2. Non-regulated waters/wetlands (check if applicable): 3 [Including potentially jurisdictional features that upon assessment are NOT waters or wetlands]

1 Boxes checked below shall be supported by completing the appropriate sections in Section III below.
2 For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least “seasonally” (e.g., typically 3 months).
3 Supporting documentation is presented in Section III.F.
Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional. Explain: Documented on Basis Form 1 of 2.

SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: Little Pee Dee River.
 Summarize rationale supporting determination: Report No. 12 of the USACE 1977 Navigability Study presently classifies the Little Pee Dee River as a navigable water of the U.S. from its confluence with the Great Pee Dee River (R.M. 33.2) to R.M. 99.0 at Little Rock, South Carolina.

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is “adjacent”.

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY):

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4.

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody4 is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:
 Watershed size: acres;
 Drainage area: Pick List
 Average annual rainfall: inches
 Average annual snowfall: inches

 (ii) Physical Characteristics:
 (a) Relationship with TNW:
 □ Tributary flows directly into TNW.
 □ Tributary flows through tributaries before entering TNW.
 Project waters are Pick List river miles from TNW.
 Project waters are Pick List river miles from RPW.
 Project waters are Pick List aerial (straight) miles from TNW.
 Project waters are Pick List aerial (straight) miles from RPW.
 Project waters cross or serve as state boundaries. Explain:

4 Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West.
Identify flow route to TNW:\(5\).
Tributary stream order, if known: .

(b) General Tributary Characteristics (check all that apply):
Tributary is:
- Natural

Tributary properties with respect to top of bank (estimate):
Average width: feet
Average depth: feet
Average side slopes: Pick List.

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Cobble
- Gravel
- Muck
- Bedrock
- Vegetation. Type/\% cover:
- Other. Explain: .

Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain: .
Tributary geometry: Pick List.
Tributary gradient (approximate average slope):

(c) Flow:
Tributary provides for: Pick List
Estimate average number of flow events in review area/year: Pick List
Describe flow regime: .
Other information on duration and volume: .
Subsurface flow: Pick List. Explain findings: .
- Dye (or other) test performed: .

Tributary has (check all that apply):
- Bed and banks
- OHWM\(6\) (check all indicators that apply):
 - clear, natural line impressed on the bank
 - changes in the character of soil
 - shelving
 - vegetation matted down, bent, or absent
 - leaf litter disturbed or washed away
 - sediment deposition
 - water staining
 - other (list):
- Discontinuous OHWM.\(7\) Explain: .

If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply):
- High Tide Line indicated by:
 - oil or scum line along shore objects
 - fine shell or debris deposits (foreshore)
 - physical markings/characteristics
 - tidal gauges
 - other (list):
- Mean High Water Mark indicated by:
 - survey to available datum;
 - physical markings;
 - vegetation lines/changes in vegetation types.

(iii) Chemical Characteristics:
Characterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.).
Explain: .
Identify specific pollutants, if known: .

\(5\) Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW.
\(6\) A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody’s flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break.
\(7\) Ibid.
(iv) Biological Characteristics. Channel supports (check all that apply):
- Riparian corridor. Characteristics (type, average width): .
- Habitat for:
 - Federally Listed species. Explain findings: .
 - Fish/spawn areas. Explain findings: .
 - Other environmentally-sensitive species. Explain findings: .
- Aquatic/wildlife diversity. Explain findings: .

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:
- General Wetland Characteristics:
 - Properties:
 - Wetland size: acres
 - Wetland type. Explain: .
 - Project wetlands cross or serve as state boundaries. Explain: .

- General Flow Relationship with Non-TNW:
 - Flow is: Pick List. Explain: .
 - Surface flow is: Pick List Characteristics: .
 - Subsurface flow: Pick List. Explain findings: .
 - Dye (or other) test performed: .

- Wetland Adjacency Determination with Non-TNW:
 - Directly abutting
 - Not directly abutting
 - Discrete wetland hydrologic connection. Explain: .
 - Separated by berm/barrier. Explain: .

- Proximity (Relationship) to TNW
 - Project wetlands are Pick List river miles from TNW.
 - Project waters are Pick List aerial (straight) miles from TNW.
 - Flow is from: Pick List.
 - Estimate approximate location of wetland as within the Pick List floodplain.

(ii) Chemical Characteristics:
- Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain: .
- Identify specific pollutants, if known: .

(iii) Biological Characteristics. Wetland supports (check all that apply):
- Riparian buffer. Characteristics (type, average width): .
- Vegetation type/percent cover. Explain: .
- Habitat for:
 - Federally Listed species. Explain findings: .
 - Fish/spawn areas. Explain findings: .
 - Other environmentally-sensitive species. Explain findings: .
- Aquatic/wildlife diversity. Explain findings: .

3. Characteristics of all wetlands adjacent to the tributary (if any)
- All wetland(s) being considered in the cumulative analysis: Pick List
- Approximately () acres in total are being considered in the cumulative analysis.
For each wetland, specify the following:

<table>
<thead>
<tr>
<th>Directly abuts? (Y/N)</th>
<th>Size (in acres)</th>
<th>Directly abuts? (Y/N)</th>
<th>Size (in acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Summarize overall biological, chemical and physical functions being performed: .

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below:

1. **Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs.** Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D: .

2. **Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs.** Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: .

3. **Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW.** Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: .

Documentation for the Record only: Significant nexus findings for seasonal RPWs and/or wetlands abutting seasonal RPWs: .

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY):

1. **TNWs and Adjacent Wetlands.** Check all that apply and provide size estimates in review area:
 - TNWs: linear feet width (ft), Or, acres.
 - Wetlands adjacent to TNWs: acres.

2. **RPWs that flow directly or indirectly into TNWs.**
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial: The tributary was determined to be a RPW with perennial flow by review of aerial photographs,
Horry County LiDAR, soil survey information and USGS topographic maps. Aerial photos depict a well defined channel with uninterrupted flow into Palmetto Swamp, the USGS topographic maps depict a solid blue line feature which is the symbol for perennial flow, Horry County soil surveys depict Woodington loamy sand which is a 100% hydric soil found most often in stream terraces. Horry County LiDAR depicts low elevations and a defined channel. Based on the previously mentioned evidence, this perennial RPW was determined to have flow at least 90% of the year under normal conditions. The wetland evaluated in this determination is contiguous and abuts the perennial RPW. There were no public access points along this portion of the perennial RPW there for field verification was not possible.

☐ Tributaries of TNW where tributaries have continuous flow “seasonally” (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: .

Provide estimates for jurisdictional waters in the review area (check all that apply):

☐ Tributary waters: linear feet width (ft).
☐ Other non-wetland waters: acres.
Identify type(s) of waters: .

3. Non-RPWs8 that flow directly or indirectly into TNWs.
☐ Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional waters within the review area (check all that apply):

☐ Tributary waters: linear feet width (ft).
☐ Other non-wetland waters: acres.
Identify type(s) of waters: .

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
☒ Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
☑ Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: Wetlands were determined to be contiguous and directly abutting an off-site perennial RPW by review of Aerial photographs, USGS topographic maps, Horry County LiDAR maps, NWIs, Horry County wetland maps, and Horry County Soil survey information. All of these desktop resources depict a contiguous wetland directly abutting the offsite tributary located due west of the project area.

☐ Wetlands directly abutting an RPW where tributaries typically flow “seasonally.” Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: .

Provide acreage estimates for jurisdictional wetlands in the review area: 2.8 acres.

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs.
☐ Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetlands in the review area: acres.

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
☐ Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetlands in the review area: acres.

7. Impoundments of jurisdictional waters.9
As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional.
☐ Demonstrate that impoundment was created from “waters of the U.S.,” or
☐ Demonstrate that water meets the criteria for one of the categories presented above (1-6), or
☐ Demonstrate that water is isolated with a nexus to commerce (see E below).
Explain:

8See Footnote # 3.
9To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook.
E. ISOLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY SUCH WATERS (CHECK ALL THAT APPLY):

☐ which are or could be used by interstate or foreign travelers for recreational or other purposes.
☐ from which fish or shellfish are or could be taken and sold in interstate or foreign commerce.
☐ which are or could be used for industrial purposes by industries in interstate commerce.
☐ Interstate isolated waters. Explain:.
☐ Other factors. Explain:.

Identify water body and summarize rationale supporting determination:.

Provide estimates for jurisdictional waters in the review area (check all that apply):
□ Tributary waters: linear feet width (ft).
□ Other non-wetland waters: acres.
□ Wetlands: acres.

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY):

☐ If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements.
☐ Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce.
☐ Prior to the Jan 2001 Supreme Court decision in “SWANCC,” the review area would have been regulated based solely on the “Migratory Bird Rule” (MBR).
☐ Waters do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction. Explain:.
☐ Other: (explain, if not covered above):.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):
☐ Non-wetland waters (i.e., rivers, streams): linear feet width (ft).
☐ Lakes/ponds: acres.
☐ Other non-wetland waters: acres. List type of aquatic resource:.
☐ Wetlands: acres.

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):
☐ Non-wetland waters (i.e., rivers, streams): linear feet width (ft).
☐ Lakes/ponds: acres.
☐ Other non-wetland waters: acres. List type of aquatic resource:.
☐ Wetlands: acres.

SECTION IV: DATA SOURCES.

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):
☒ Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: The project area and associated waters are depicted on sheets 1-2 of 2 of a sketch, prepared by the Corps, dated June 16, 2015, and titled "SAC 2015-00354-4S; Enoch Thomas Lilly Tract / Horry County, SC / Approximate - Approved JD".
☐ Data sheets prepared/submitted by or on behalf of the applicant/consultant.
☐ Office concurs with data sheets/delineation report.
☐ Office does not concur with data sheets/delineation report.
☐ Data sheets prepared by the Corps: May 21, 2015.
☐ Corps navigable waters’ study: USACE Charleston District 1977 Navigability Study No. 12, Little Pee Dee River Basin.
☐ U.S. Geological Survey Hydrologic Atlas:
☒ USGS NHD data.
☐ USGS 8 and 12 digit HUC maps.
☒ U.S. Geological Survey map(s). Cite scale & quad name: Horry Quad; The USGS topographic survey information located within the Horry quad depicts the project area as a combination of cleared and forested uplands. The forested area depicted in the Horry quad is part of a contiguous run that continues offshore and intersects a solid blue line feature.
☒ USDA Natural Resources Conservation Service Soil Survey. Citation: Horry County Soil Survey Sheet # 42; Horry County soil survey information depicts the project area as being comprised of the following soil types: Woodington fine sandy loam, a 100%

10 Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos.
hydric soil found most often in stream terraces, Goldsboro loamy fine sand, a partially hydric soil often found in stream terraces, and Suffolk loamy sand, a partially hydric soil found in flats.

☐ National wetlands inventory map(s). Cite name: U42, U21 and PFO4/1B; The NWIs classify the project area as a combination of upland agricultural land, upland evergreen forest and saturated palustrine forest.
☐ State/Local wetland inventory map(s): .
☐ FEMA/FIRM maps: .
☐ 100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)
☐ or ☒ Other (Name & Date): Photos taken on-site by the Corps dated May 05, 2015 and May 21, 2015.
☐ Previous determination(s). File no. and date of response letter: .
☐ Applicable/supporting case law: .
☐ Applicable/supporting scientific literature: .
☐ Other information (please specify): .

B. ADDITIONAL COMMENTS TO SUPPORT JD: This form addresses an approximately 18.55 acre tract that contains 0.11 acre of wetland that was determined to be non-jurisdictional, isolated due to the lack of a hydrologic connection to other waters of the United States (addressed on Basis Form 1 of 2) and approximately 2.8 acres of jurisdictional wetlands that are documented on this basis form.

Jurisdictional wetlands on site are part of a contiguous wetland run that continues off site and abuts a perennial RPW that flows into Palmetto Swamp. The offsite tributary is located due west of the project area. Palmetto swamp becomes Little Pee Dee Swamp which drains into the Great Pee Dee River.

During site visits conducted on May 05, 2015 and May 21, 2015 soils within the boundaries of the delineated wetland were found to be saturated and to contain oxidized rhizospheres along living root channels. Obligate and Fac Wet vegetation was abundant in the herbaceous layer and soils met an A11 indicator (depleted below dark surface) as outlined in the "Field Indicators of Hydric Soils in the United States" guide, version 7.0, 2010. Based on NRCS WETS data climatic conditions at the time were within normal range.

Limits of jurisdiction were established by the parameters set forth in the 1987 Wetland Delineation Manual and the 2010 Coastal Plain Supplement. The offsite tributary was determined to be a RPW with perennial flow by review of aerial photographs, Horry County LiDAR, soil survey information and USGS topographic maps. Aerial photos depict a well defined channel with uninterrupted flow into Palmetto Swamp, the USGS topographic maps depict a solid blue line feature which is the symbol for perennial flow, Horry County soil surveys depict Woodington loamy sand which is a 100% hydric soil found most often in stream terraces. Horry County LiDAR depicts low elevations and a defined channel. Based on the previously mentioned evidence, this perennial RPW was determined to have flow at least 90% of the year under normal conditions. The wetland evaluated in this determination is contiguous and abuts the perennial RPW. There were no public access points along this portion of the perennial RPW; therefore, field verification was not possible.

Non-jurisdictional features are documented on basis form 1 of 2.