APPROVED JURISDICTIONAL DETERMINATION FORM
U.S. Army Corps of Engineers

This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): March 16, 2016

B. DISTRICT OFFICE, FILE NAME, AND NUMBER: JD FORM 1 of 2. Charleston District-South Branch, American Star Development SAC-2015-01348-2JD

C. PROJECT LOCATION AND BACKGROUND INFORMATION:

- State: South Carolina
- County/parish/borough: Charleston
- City: Mount Pleasant

Center coordinates of site (lat/long in degree decimal format): Lat. 32.856604° N, Long. -79.793248° W.

- Universal Transverse Mercator:

- Name of nearest waterbody: Unnamed Tributary to Copahee Sound
- Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Copahee Sound
- Name of watershed or Hydrologic Unit Code (HUC):

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY):

- Office (Desk) Determination. Date: 3/16/2016
- Field Determination. Date(s): 10/27/2015

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION.

There are no “navigable waters of the U.S.” within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area. [Required]

- Waters subject to the ebb and flow of the tide.
- Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce. Explain: .

B. CWA SECTION 404 DETERMINATION OF JURISDICTION.

There Are “waters of the U.S.” within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required]

1. Waters of the U.S.
 a. Indicate presence of waters of U.S. in review area (check all that apply):
 - TNWs, including territorial seas
 - Wetlands adjacent to TNWs
 - Relatively permanent waters² (RPWs) that flow directly or indirectly into TNWs
 - Non-RPWs that flow directly or indirectly into TNWs
 - Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 - Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 - Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 - Impoundments of jurisdictional waters
 - Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area:
 - Non-wetland waters: linear feet: 1131 width (ft) and/or acres.
 - Wetlands: 0.42 acres.

 c. Limits (boundaries) of jurisdiction based on: 1987 Delineation Manual
 - Elevation of established OHWM (if known): .

2. Non-regulated waters/wetlands (check if applicable):³ [Including potentially jurisdictional features that upon assessment are NOT waters or wetlands]

¹ Boxes checked below shall be supported by completing the appropriate sections in Section III below.
² For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least “seasonally” (e.g., typically 3 months).
³ Supporting documentation is presented in Section III.F.
Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional.
Explain:

SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: .
 Summarize rationale supporting determination: .

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is “adjacent”: .

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY):

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e., tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4.

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:
 Watershed size: 108,770 acres ; 03050209-02
 Drainage area: 410 acres
 Average annual rainfall: 48.01 inches
 Average annual snowfall: 0 inches

 (ii) Physical Characteristics:
 (a) Relationship with TNW:
 ☑ Tributary flows directly into TNW.
 ✗ Tributary flows through 1 tributary before entering TNW.

 Project waters are 1-2 river miles from TNW.
 Project waters are 1 (or less) river miles from RPW.
 Project waters are 1-2 aerial (straight) miles from TNW.
 Project waters are 1 (or less) aerial (straight) miles from RPW.
 Project waters cross or serve as state boundaries. Explain: .

4 Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West.
Identify flow route to TNW: sRPW and Wetland C flow into unnamed perennial tributary which flows into a tidal creek flowing into Copahee Sound.

Tributary stream order, if known:.

(b) General Tributary Characteristics (check all that apply):

Tributary is: [] Natural [] Artificial (man-made). Explain:
[] Manipulated (man-altered). Explain: Portions of Channel have been manipulated, however most of the stream stretch shows sinuous channel.

Tributary properties with respect to top of bank (estimate):

- Average width: 5 feet
- Average depth: 4 feet
- Average side slopes: Vertical (1:1 or less).

Primary tributary substrate composition (check all that apply):

- [] Silts
- [] Sands
- [] Gravels
- [] Cobbles
- [] Bedrock
- [] Vegetation. Type/% cover:
- [] Muck
- [] Concrete
- [] Other. Explain:.

Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain:.

Presence of run/riffle/pool complexes. Explain: Tributary was at bankfull at time of survey. Riffle sequences were observed as tributary passed underneath a culvert.

Tributary geometry: meandering.

Tributary gradient (approximate average slope): %

(c) Flow:

Tributary provides for: Seasonal Flow

Estimate average number of flow events in review area/year: 20 or more

Describe flow regime: Tributary appears to flow most of the year. However, previous surveys completed by the consultant showed that the channel was dry for part of the year in the summer.

Other information on duration and volume:.

Surface flow is: Confined. Characteristics: Confined flow with steep banks and channelized in portions.

Subsurface flow: Unknown. Explain findings:.

Dye (or other) test performed:.

Tributary has (check all that apply):

- [] Bed and banks
- [] OHWM (check all indicators that apply):
 - [] the presence of litter and debris
 - [] destruction of terrestrial vegetation
 - [] the presence of wrack line
 - [] scour
 - [] sediment sorting
 - [] multiple observed or predicted flow events
 - [] abrupt change in plant community
 - [] other (list):
- [] Discontinuous OHWM. Explain:.

If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply):

- [] High Tide Line indicated by:
 - [] oil or scum line along shore objects
 - [] fine shell or debris deposits (foreshore)
 - [] physical markings/characteristics
 - [] tidal gauges
 - [] other (list):
- [] Mean High Water Mark indicated by:
 - [] survey to available datum;
 - [] physical markings;
 - [] vegetation lines/changes in vegetation types.

(iii) Chemical Characteristics:

5 Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW.

6 A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody’s flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break.

7 Ibid.
Characterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.).

Explain: **Tributary was clear with no oily film.**
Identify specific pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- [] Riparian corridor. Characteristics (type, average width): .
- [] Wetland fringe. Characteristics: ** Portions of wetlands onsite and offshore directly abut this tributary.**

 Habitat for:
 - [] Federally Listed species. Explain findings: .
 - [] Fish/spawn areas. Explain findings: .
 - [] Other environmentally-sensitive species. Explain findings: .
 - [] Aquatic/wildlife diversity. Explain findings: .

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics:

 Properties:
 - Wetland size: **0.42** acres
 - Wetland type. Explain: **PFO1.**
 - Wetland quality. Explain: **Wetland has wooded upland buffer and supports common FACW species.**

 Project wetlands cross or serve as state boundaries. Explain: .

(b) General Flow Relationship with Non-TNW:

 Flow is: **intermittent.** Explain: **Wetland C continues offshore where it abuts sRPW at an offshore location.**

 Surface flow is: **discrete and confined**

 Characteristics: **Flow also occurs in high water events, flowing into the RPW outside of the wetland when the wetland is full.**

 - Subsurface flow: Unknown. Explain findings: .
 - [] Dye (or other) test performed: .

(c) Wetland Adjacency Determination with Non-TNW:

 - [] Directly abutting
 - [] Not directly abutting
 - [] Discrete wetland hydrologic connection. Explain: .
 - [] Ecological connection. Explain: .
 - [] Separated by berm/barrier. Explain: .

(d) Proximity (Relationship) to TNW

 Project wetlands are 1-2 river miles from TNW.
 Project waters are 1-2 aerial (straight) miles from TNW.
 Flow is from: **wetlands to navigable waters.**

 Estimate approximate location of wetland as within the **Pick List** floodplain.

(ii) Chemical Characteristics:

 Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain: **Water color dark with evidence of organics. Surrounding landscape is developed.**

 Identify specific pollutants, if known: .

(iii) Biological Characteristics. Wetland supports (check all that apply):

 - [] Riparian buffer. Characteristics (type, average width): .
 - [] Vegetation type/percent cover. Explain: .
 - [] Habitat for:
 - [] Federally Listed species. Explain findings: .
 - [] Fish/spawn areas. Explain findings: .
 - [] Other environmentally-sensitive species. Explain findings: .
 - [] Aquatic/wildlife diversity. Explain findings: **Aquatic and wildlife diversity increases with habitat diversity.**
 - **Forest wetlands have the potential to increase both floral and faunal diversity.**

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in the cumulative analysis: **1**

Approximately (**0.42**) acres in total are being considered in the cumulative analysis.
For each wetland, specify the following:

<table>
<thead>
<tr>
<th>Directly abuts? (Y/N)</th>
<th>Size (in acres)</th>
<th>Directly abuts? (Y/N)</th>
<th>Size (in acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>0.42</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Summarize overall biological, chemical and physical functions being performed: Wetlands and tributaries not only provide habitat for various aquatic and terrestrial organisms, including a variety of insects, amphibians, reptiles, mammals and birds, but are also a source of food, nutrients, and carbon for organisms located downstream. Runoff, which may contain pollutants, sediments, excess nutrients, etc., from adjacent uplands that flows through wetlands before entering tributaries has the opportunity to be filtered out prior to flowing to downstream TNWs. Excess water can temporarily be stored in wetlands thereby minimizing potential flooding of downstream areas. In addition, water can also slowly be released from wetlands downstream to maintain seasonal flow volumes. Runoff water may also transport organisms, nutrients, and carbon from the wetlands into the tributaries, which continue to flow to downstream TNWs. The wetlands within the review area are forested and provide water retention and storage functions allowing for slow release to downstream waters, act as a nutrient and carbon sink, as well as provide habitat for mammalian, avian, and aquatic species.

According to the SCDHEC Watershed Assessment information available online, this watershed includes portions of the Atlantic Intracoastal Waterway and the coastal zone region of South Carolina. Future growth is expected and is occurring in the watershed. The closest monitoring station is an unnamed tributary to Dewees Creek between Hamlin Sound and Copahee Sound (RT-042078). Aquatic life and recreational uses are fully supported. Although dissolved oxygen excursions occurred, they were typical of values seen in such systems and were considered natural, not standard violations. The project area is located within an area of Charleston County that is being developed. Recent and ongoing development is visible in areas surrounding the project review area and the 410 acre drainage area being discussed in this significant nexus determination. Currently, the wetlands located within this 410 acre drainage area are likely performing many of the services that wetlands and tributaries provide; however, when wetlands and tributaries are filled or altered, the services they provide may be compromised and the loss of those services affects downstream waters and TNWs, including Copahee Sound. The wetlands within the review area have a significant nexus to downstream TNWs as they provide a source of carbon and nutrients, can provide water quality functions, can store excess water minimizing flooding impacts downstream, can maintain seasonal flow volumes, and can transport organisms, carbon, and nutrients. In addition, the wetlands within the review area are contributing to the relatively good water quality and integrity of the downstream TNW.

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below:
1. **Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs.** Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D: [Blank].

2. **Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs.** Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: [Blank].

3. **Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW.** Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: [Blank].

Documentation for the Record only: **Significant nexus findings for seasonal RPWs and/or wetlands abutting seasonal RPWs:**

Tributary appears to flow most of the year and is a solid blueline tributary on topographic maps. However, previous surveys completed by the consultant showed that the channel was dry for part of the year in the summer. Wetland C directly abuts sRPW and shares a direct hydrological connection. The sRPW flows into an unnamed perennial tributary which flows into a tidal creek of Copahee Sound. Wetlands and tributaries not only provide habitat for various aquatic and terrestrial organisms, including a variety of insects, amphibians, reptiles, mammals and birds, but are also a source of food, nutrients, and carbon for organisms located downstream. Runoff, which may contain pollutants, sediments, excess nutrients, etc., from adjacent uplands that flows through wetlands before entering tributaries has the opportunity to be filtered out prior to flowing to downstream TNWs. Excess water can temporarily be stored in wetlands thereby minimizing potential flooding of downstream areas. In addition, water can also slowly be released from wetlands downstream to maintain seasonal flow volumes. Runoff water may also transport organisms, nutrients, and carbon from the wetlands into the tributaries, which continue to flow to downstream TNWs. The wetlands within the review area are forested and provide water retention and storage functions allowing for slow release to downstream waters, act as a nutrient and carbon sink, as well as provide habitat for mammalian, avian, and aquatic species.

According to the SCDHEC Watershed Assessment information available online, this watershed includes portions of the Atlantic Intracoastal Waterway and the coastal zone region of South Carolina. Future growth is expected and is occurring in the watershed. The closest monitoring station is an unnamed tributary to Dewees Creek between Hamlin Sound and Copahee Sound (RT-042078). Aquatic life and recreational uses are fully supported. Although dissolved oxygen excursions occurred, they were typical of values seen in such systems and were considered natural, not standard violations. The project area is located within an area of Charleston County that is being developed. Recent and ongoing development is visible in areas surrounding the project review area and the 410 acre drainage area being discussed in this significant nexus determination. Currently, the wetlands located within this 410 acre drainage area are likely performing many of the services that wetlands and tributaries provide; however, when wetlands and tributaries are filled or altered, the services they provide may be compromised and the loss of those services affects downstream waters and TNWs, including Copahee Sound. The wetlands within the review area have a significant nexus to downstream TNWs as they provide a source of carbon and nutrients, can provide water quality functions, can store excess water minimizing flooding impacts downstream, can maintain seasonal flow volumes, and can transport organisms, carbon, and nutrients. In addition, the wetlands within the review area are contributing to the relatively good water quality and integrity of the downstream TNW.

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY):

1. **TNWs and Adjacent Wetlands.** Check all that apply and provide size estimates in review area:
 - TNWs: linear feet width (ft), Or, acres.
 - Wetlands adjacent to TNWs: acres.

2. **RPWs that flow directly or indirectly into TNWs.**
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial: [Blank]
 - Tributaries of TNW where tributaries have continuous flow “seasonally” (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: sRPW is an unnamed tributary to Copahee Sound. Topographic maps indicate that sRPW, is a blue-line stream. The stream flow path can clearly be observed on aerial imagery. This RPW consists of a sinuous channel that was bankful at time of survey. This unnamed tributary was flowing at the time of survey. This tributary exhibits physical and hydrological characteristics commonly associated with normal flow including discernible bank and streambed.

 Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters: linear feet width (ft).
 - Other non-wetland waters: acres.
 - Identify type(s) of waters: [Blank].
3. Non-RPWs\(^8\) that flow directly or indirectly into TNWs.
- Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional waters within the review area (check all that apply):
- Tributary waters: linear feet width (ft).
- Other non-wetland waters: acres.

Specify type(s) of waters: .

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
- Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW:
 - Jurisdictional Wetland C directly abuts sRPW offsite and share a direct hydrological connection. When the RPW overflows, water can flow directly to the wetland and surface water from the wetland can also drain directly into the RPW.

Provide acreage estimates for jurisdictional wetlands in the review area: acres.

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs.
- Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetlands in the review area: acres.

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
- Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetlands in the review area: acres.

7. Impoundments of jurisdictional waters.\(^9\)
- As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional.
- Demonstrate that impoundment was created from “waters of the U.S.,” or
- Demonstrate that water meets the criteria for one of the categories presented above (1-6), or
- Demonstrate that water is isolated with a nexus to commerce (see E below).

Explain:

E. ISOLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY SUCH WATERS (CHECK ALL THAT APPLY):\(^10\)
- which are or could be used by interstate or foreign travelers for recreational or other purposes.
- from which fish or shellfish are or could be taken and sold in interstate or foreign commerce.
- which are or could be used for industrial purposes by industries in interstate commerce.
- Interstate isolated waters. Explain: .
- Other factors. Explain: .

Identify water body and summarize rationale supporting determination: .

Provide estimates for jurisdictional waters in the review area (check all that apply):
- Tributary waters: linear feet width (ft).
- Other non-wetland waters: acres.

Specify type(s) of waters: .
- Wetlands: acres.

\(^8\)See Footnote # 3.
\(^9\)To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook.
\(^10\)Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos.
F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY):

☐ If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements.

☐ Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce.

☐ Prior to the Jan 2001 Supreme Court decision in “SWANCC,” the review area would have been regulated based solely on the “Migratory Bird Rule” (MBR).

☐ Waters do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction. Explain:

☐ Other: (explain, if not covered above):

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non-wetland waters (i.e., rivers, streams): linear feet width (ft).

☐ Lakes/ponds: acres.

☐ Other non-wetland waters: acres. List type of aquatic resource:

☐ Wetlands: acres.

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters (i.e., rivers, streams): linear feet width (ft).

☐ Lakes/ponds: acres.

☐ Other non-wetland waters: acres. List type of aquatic resource:

☐ Wetlands: acres.

SECTION IV: DATA SOURCES.

A. SUPPORTING DATA. Data reviewed for JD (check all that apply) - checked items shall be included in case file and, where checked and requested, appropriately reference sources below:

☐ Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: Passarella and Associates, Inc.

☐ Data sheets prepared/submitted by or on behalf of the applicant/consultant. Corps concurs with conclusions
 ☐ Office concurs with data sheets/delineation report.
 ☐ Office does not concur with data sheets/delineation report.
 ☐ Data sheets prepared by the Corps:

☐ Corps navigable waters’ study:

☐ U.S. Geological Survey Hydrologic Atlas:

☐ USGS NHD data:

☐ USGS 8 and 12 digit HUC maps:

☐ U.S. Geological Survey map(s). Cite scale & quad name: 1:24000 Fort Moultrie Quad.

☐ USDA Natural Resources Conservation Service Soil Survey. Citation: Charleston Co. Soil Sheet 45.

☐ National wetlands inventory map(s). Cite name: USFWS NWI Maps.

☐ State/Local wetland inventory map(s):

☐ FEMA/FIRM maps:

☐ 100-year Floodplain Elevation is: (National Geodectic Vertical Datum of 1929)

☐ Photographs: ☑ Aerial (Name & Date): Google Earth™ 2014 images.

 or ☐ Other (Name & Date):

☐ Previous determination(s). File no. and date of response letter:

☐ Applicable/supporting case law:

☐ Applicable/supporting scientific literature:

☐ Other information (please specify): The project area is depicted on the survey plat which was prepared by Michael S. Shulse, PLS, dated January 6, 2016 and entitled “Wetlands Survey Of Of TMS#578-00-00-128/129/167/168,&217 Christ Church Parish Owned By Glover, Mazyck, Smith & Coaxum Located In Mount Pleasant Area Charleston County South Carolina”.

B. ADDITIONAL COMMENTS TO SUPPORT JD:

This form documents the jurisdictional status of a seasonal tributary and wetland adjacent to it. The property includes 1,131 feet of a single seasonal RPW, with one adjacent wetland directly abutting the seasonal RPW. The seasonal RPW and wetland are jurisdictional and subject to Section 404 of the Clean Water Act.

The non-jurisdictional status of isolated wetland A and B are documented on Form 2 of 2.
SECTION I: BACKGROUND INFORMATION
A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): February 16, 2016
C. PROJECT LOCATION AND BACKGROUND INFORMATION:
 State: South Carolina County/parish/borough: Charleston City: Mount Pleasant
 Center coordinates of site (lat/long in degree decimal format): Lat. 32.856604° N, Long. -79.793248° W.
 Universal Transverse Mercator:
 Name of nearest waterbody: Unnamed Tributary to Copahee Sound
 Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Copahee Sound
 Name of watershed or Hydrologic Unit Code (HUC):
 Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request.
 Check if other sites (e.g., offsite mitigation sites, disposal sites, etc…) are associated with this action and are recorded on a different JD form.
D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY):
 ☒ Office (Desk) Determination. Date: 2/16/2016
 ☒ Field Determination. Date(s): 10/27/2015

SECTION II: SUMMARY OF FINDINGS
A. RHA SECTION 10 DETERMINATION OF JURISDICTION.
 There are no “navigable waters of the U.S.” within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area. [Required]
 Waters subject to the ebb and flow of the tide.
 Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce. Explain: .

B. CWA SECTION 404 DETERMINATION OF JURISDICTION.
 There Are No “waters of the U.S.” within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required]

1. Waters of the U.S.
 a. Indicate presence of waters of U.S. in review area (check all that apply): ¹
 - TNWs, including territorial seas
 - Wetlands adjacent to TNWs
 - Relatively permanent waters² (RPWs) that flow directly or indirectly into TNWs
 - Non-RPWs that flow directly or indirectly into TNWs
 - Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 - Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 - Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 - Impoundments of jurisdictional waters
 - Isolated (interstate or intrastate) waters, including isolated wetlands
 b. Identify (estimate) size of waters of the U.S. in the review area:
 Non-wetland waters: linear feet: width (ft) and/or .acres.
 Wetlands: acres.
 c. Limits (boundaries) of jurisdiction based on: 1987 Delineation Manual
 Elevation of established OHWM (if known): .

2. Non-regulated waters/wetlands (check if applicable):³ [Including potentially jurisdictional features that upon assessment are NOT waters or wetlands]

¹ Boxes checked below shall be supported by completing the appropriate sections in Section III below.
² For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least “seasonally” (e.g., typically 3 months).
³ Supporting documentation is presented in Section III.F.
Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional. Explain: Two non-jurisdictional isolated wetland are located on the west side of the subject property. Isolated Non-Jurisdictional Wetland B is a 0.18 acre depressional wetland formed from an elevated road on the north side and a house on the west side. Non-Jurisdictional Wetland A is a 0.09 acre depressional wetland restricted by residential developments and a wood fence on the west and south side. In both wetlands, there is a clear elevation change from the upland to the wetland. There was no apparent surface or shallow subsurface hydrologic connection, no apparent connection to interstate or foreign commerce and no apparent evidence of ecological interconnectivity between these isolated wetlands and waters of the U.S. Therefore these wetlands were determined to be non-jurisdictional and not regulated by Section 404 of the Clean Water Act.

SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1 only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW:
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is “adjacent”:

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY):

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4.

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:
 Watershed size: Pick List
 Drainage area: Pick List
 Average annual rainfall: inches
 Average annual snowfall: inches

 (ii) Physical Characteristics:
 (a) Relationship with TNW:
 [] Tributary flows directly into TNW.
 [] Tributary flows through Pick List tributaries before entering TNW.

4 Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West.
Project waters are **Pick List** river miles from TNW.
Project waters are **Pick List** river miles from RPW.
Project waters are **Pick List** aerial (straight) miles from TNW.
Project waters are **Pick List** aerial (straight) miles from RPW.
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW³:
Tributary stream order, if known:

(b) **General Tributary Characteristics (check all that apply):**

Tributary is:
- Natural
- Artificial (man-made). Explain:
- Manipulated (man-altered). Explain:

Tributary properties with respect to top of bank (estimate):
Average width:
feet
Average depth:
feet
Average side slopes: **Pick List.**

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Cobbles
- Gravel
- Muck
- Bedrock
- Vegetation. Type/% cover:
- Other. Explain:

Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain:
Presence of run/riffle/pool complexes. Explain:
Tributary geometry: **Pick List.**
Tributary gradient (approximate average slope):

(c) **Flow:**
Tributary provides for: **Pick List**
Estimate average number of flow events in review area/year: **Pick List**
Describe flow regime:
Other information on duration and volume:

Surface flow is: **Pick List.** Characteristics:
Subsurface flow: **Pick List.** Explain findings:
- Dye (or other) test performed:

Tributary has (check all that apply):
- Bed and banks
- OHWM⁶ (check all indicators that apply):
 - clear, natural line impressed on the bank
 - changes in the character of soil
 - shelving
 - vegetation matted down, bent, or absent
 - leaf litter disturbed or washed away
 - sediment deposition
 - water staining
 - other (list):
- the presence of litter and debris
- destruction of terrestrial vegetation
- the presence of wrack line
- sediment sorting
- scour
- multiple observed or predicted flow events
- abrupt change in plant community
- other (list):

If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply):
- High Tide Line indicated by:
 - oil or scum line along shore objects
 - fine shell or debris deposits (foreshore)
 - physical markings/characteristics
 - tidal gauges
 - other (list):
- Mean High Water Mark indicated by:
 - survey to available datum;
 - physical markings;
 - vegetation lines/changes in vegetation types.

³ Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW.
⁶ A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody’s flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break.
⁷ Ibid.
(iii) **Chemical Characteristics:**
Characterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.).

Explain: .

Identify specific pollutants, if known: .

(iv) **Biological Characteristics. Channel supports (check all that apply):**
- Riparian corridor. Characteristics (type, average width): .
- Habitat for:
 - Federally Listed species. Explain findings: .
 - Fish/spawn areas. Explain findings: .
 - Other environmentaly-sensitive species. Explain findings: .
 - Aquatic/wildlife diversity. Explain findings: .

2. **Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW**

(i) **Physical Characteristics:**
(a) **General Wetland Characteristics:**
Properties:
- Wetland size: acres
- Wetland type. Explain: .

Project wetlands cross or serve as state boundaries. Explain: .

(b) **General Flow Relationship with Non-TNW:**
Flow is: Pick List. Explain: .

Surface flow is: Pick List
Characteristics: .

Subsurface flow: Pick List. Explain findings: .
- Dye (or other) test performed: .

(c) **Wetland Adjacency Determination with Non-TNW:**
- Directly abutting
- Not directly abutting
 - Discrete wetland hydrologic connection. Explain: .
 - Separated by berm/barrier. Explain: .

(d) **Proximity (Relationship) to TNW**
Project wetlands are Pick List river miles from TNW.
Project waters are Pick List aerial (straight) miles from TNW.
Flow is from: Pick List.
Estimate approximate location of wetland as within the Pick List floodplain.

(ii) **Chemical Characteristics:**
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain: .

Identify specific pollutants, if known: .

(iii) **Biological Characteristics. Wetland supports (check all that apply):**
- Riparian buffer. Characteristics (type, average width): .
- Vegetation type/percent cover. Explain: .
- Habitat for:
 - Federally Listed species. Explain findings: .
 - Fish/spawn areas. Explain findings: .
 - Other environmentaly-sensitive species. Explain findings: .
 - Aquatic/wildlife diversity. Explain findings: .

3. **Characteristics of all wetlands adjacent to the tributary (if any)**
All wetland(s) being considered in the cumulative analysis: Pick List
Approximately () acres in total are being considered in the cumulative analysis.
For each wetland, specify the following:

<table>
<thead>
<tr>
<th>Directly abuts? (Y/N)</th>
<th>Size (in acres)</th>
<th>Directly abuts? (Y/N)</th>
<th>Size (in acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Summarize overall biological, chemical and physical functions being performed: .

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with all of its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with all of its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below:

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D: .

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: .

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: .

Documentation for the Record only: Significant nexus findings for seasonal RPWs and/or wetlands abutting seasonal RPWs: .

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY):

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs: linear feet width (ft), Or, acres.
 - Wetlands adjacent to TNWs: acres.

2. RPWs that flow directly or indirectly into TNWs.
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial:
Tributaries of TNW where tributaries have continuous flow “seasonally” (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally.

Provide estimates for jurisdictional waters in the review area (check all that apply):
- Tributary waters: linear feet width (ft).
- Other non-wetland waters: acres.

Identify type(s) of waters:

3. Non-RPWs8 that flow directly or indirectly into TNWs.
- Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional waters within the review area (check all that apply):
- Tributary waters: linear feet width (ft).
- Other non-wetland waters: acres.

Identify type(s) of waters:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
- Wetlands directly abutting an RPW and thus are jurisdictional as adjacent wetlands.
- Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW:

Wetlands directly abutting an RPW where tributaries typically flow “seasonally.” Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW:

Provide acreage estimates for jurisdictional wetlands in the review area: acres.

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs.
- Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetlands in the review area: acres.

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
- Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetlands in the review area: acres.

7. Impoundments of jurisdictional waters.9

As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional.
- Demonstrate that impoundment was created from “waters of the U.S.,” or
- Demonstrate that water meets the criteria for one of the categories presented above (1-6), or
- Demonstrate that water is isolated with a nexus to commerce (see E below).

Explain:

E. ISOLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY SUCH WATERS (CHECK ALL THAT APPLY):10

- which are or could be used by interstate or foreign travelers for recreational or other purposes.
- from which fish or shellfish are or could be taken and sold in interstate or foreign commerce.
- which are or could be used for industrial purposes by industries in interstate commerce.
- Interstate isolated waters. Explain: .
- Other factors. Explain: .

8See Footnote # 3.

9 To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook.

10 Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos.
Identify water body and summarize rationale supporting determination:

Provide estimates for jurisdictional waters in the review area (check all that apply):

☐ Tributary waters: linear feet width (ft).
☐ Other non-wetland waters: acres.

Identify type(s) of waters:

☐ Wetlands: acres.

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY):

☐ If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements.
☐ Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce.
☐ Prior to the Jan 2001 Supreme Court decision in "SWANCC," the review area would have been regulated based solely on the "Migratory Bird Rule" (MBR).
☐ Waters do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction. Explain:
☐ Other: (explain, if not covered above):

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non-wetland waters (i.e., rivers, streams): linear feet width (ft).
☐ Lakes/ponds: acres.
☐ Other non-wetland waters: acres. List type of aquatic resource:
☐ Wetlands: 0.27 acres.

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters (i.e., rivers, streams): linear feet width (ft).
☐ Lakes/ponds: acres.
☐ Other non-wetland waters: acres. List type of aquatic resource:
☐ Wetlands:

SECTION IV: DATA SOURCES.

A. SUPPORTING DATA. Data reviewed for JD (check all that apply) - checked items shall be included in case file and, where checked and requested, appropriately reference sources below:
☐ Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: Passarella and Associates, Inc.
☐ Data sheets prepared/submitted by or on behalf of the applicant/consultant. Corps concurs with conclusions
☐ Office concurs with data sheets/delineation report.
☐ Office does not concur with data sheets/delineation report.
☐ Data sheets prepared by the Corps:
☐ Corps navigable waters’ study:
☐ USGS NHD data.
☐ USGS 8 and 12 digit HUC maps.
☐ U.S. Geological Survey map(s). Cite scale & quad name: 1:24000 Fort Moultrie Quad.
☐ USDA Natural Resources Conservation Service Soil Survey. Citation: Charleston Co. Soil Sheet 45.
☐ National wetlands inventory map(s). Cite name: USFWS NWI Maps.
☐ State/Local wetland inventory map(s):
☐ FEMA/FIRM maps:
☐ 100-year Floodplain Elevation is: (National Geodectic Vertical Datum of 1929)
☐ Photographs: ☐ Aerial (Name & Date): Google Earth™ 2014 images.
☐ Previous determination(s). File no. and date of response letter:
☐ Applicable/supporting case law:
☐ Applicable/supporting scientific literature:
☐ Other information (please specify):

B. ADDITIONAL COMMENTS TO SUPPORT JD:

This office has determined that the isolated wetlands documented in Section III Part F of this form has no physical, chemical, or biological connection to waters of the U.S., including any apparent surface or shallow subsurface hydrologic connection. There is no apparent connection to interstate or foreign commerce. In addition, there is no apparent evidence of ecological interconnectivity between the isolated wetlands and waters of the U.S. On this basis, this office has determined that Wetlands A and B are isolated from waters of the U.S. and is not within the jurisdiction of the Clean Water Act. The jurisdictional status of Wetland C and the RPW are discussed on Form 1 of 1