This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): May 16, 2018

B. DISTRICT OFFICE, FILE NUMBER, FILE NAME: JD Form 1 of 2; SAC-2018-00094 Moses Johnson

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
State: South Carolina
County/parish/borough: Horry County
City: Longs
Center coordinates of site (lat/long in degree decimal format): Lat. 33.9348°, Long. -78.7383°
Universal Transverse Mercator: NAD 83 UTM 17N
Name of nearest waterbody: Big Branch
Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Waccamaw River
Name of watershed or Hydrologic Unit Code (HUC): Waccamaw River HUC: 0304020607
☐ Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request.
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc…) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY):
☐ Office (Desk) Determination. Date: []
☒ Field Determination. Date(s): 3 March 2018 & 23 March 2018

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION.

There are no “navigable waters of the U.S.” within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area. [Required]

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce. Explain: .

B. CWA SECTION 404 DETERMINATION OF JURISDICTION.

There are “waters of the U.S.” within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required]

1. Waters of the U.S.
 a. Indicate presence of waters of U.S. in review area (check all that apply): 1
 ☐ TNWs, including territorial seas
 ☐ Wetlands adjacent to TNWs
 ☒ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area:
 Non-wetland waters: Tributary 1, 1380’ linear feet: 10’ width (ft) and/or Jurisdictional WOUS #1 (impoundment) 1.7 acres.
 Wetlands: Wetland 1 5.7 acres.

 c. Limits (boundaries) of jurisdiction based on: 1987 Delineation Manual, Established by OHWM, Pick List
 Elevation of established OHWM (if known): .

2. Non-regulated waters/wetlands (check if applicable): 2 [Including potentially jurisdictional features that upon assessment are NOT waters or wetlands]
 ☒ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional. Explain: Located onsite are two upland excavated ditches that are not jurisdictional draining onsite uplands.

1 Boxes checked below shall be supported by completing the appropriate sections in Section III below.
2 For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least “seasonally” (e.g., typically 3 months).
3 Supporting documentation is presented in Section III.F.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
Identify TNW: Waccamaw River.

Summarize rationale supporting determination: subject to the ebb and flow of the tide.

2. Wetland adjacent to TNW
Identify flow route to TNW:

Summarize rationale supporting conclusion that wetland is “adjacent”:

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY):

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4.

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

(i) General Area Conditions:

<table>
<thead>
<tr>
<th>Watershed size:</th>
<th>Pick List</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drainage area:</td>
<td>Pick List</td>
</tr>
</tbody>
</table>

Average annual rainfall: __________ inches
Average annual snowfall: __________ inches

(ii) Physical Characteristics:

(a) Relationship with TNW:

[] Tributary flows directly into TNW.
[] Tributary flows through Pick List tributaries before entering TNW.

Project waters are Pick List river miles from TNW.
Project waters are Pick List river miles from RPW.
Project waters are Pick List aerial (straight) miles from TNW.
Project waters are Pick List aerial (straight) miles from RPW.
Project waters cross or serve as state boundaries. Explain: __________

Identify flow route to TNW:

Tributary stream order, if known: __________

4 Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West.

5 Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW.
(b) *General Tributary Characteristics* (check all that apply):

Tributary is:
- [] Natural
- [] Artificial (man-made). Explain:
- [] Manipulated (man-altered). Explain:

Tributary properties with respect to top of bank (estimate):

- Average width: __________ feet
- Average depth: __________ feet
- Average side slopes: **Pick List**.

Primary tributary substrate composition (check all that apply):

- [] Silts
- [] Sands
- [] Cobbles
- [] Gravel
- [] Bedrock
- [] Vegetation. Type/% cover:
- [] Other. Explain:

Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain:

Presence of run/riffle/pool complexes. Explain:

Tributary geometry: Pick List.

- Tributary gradient (approximate average slope): __________%

(c) **Flow:**

- Tributary provides for: **Pick List**

 - Estimate average number of flow events in review area/year: **Pick List**

 - Describe flow regime:

 - Other information on duration and volume:

- Surface flow is: **Pick List.** Characteristics:

- Subsurface flow: **Pick List.** Explain findings:

 - Dye (or other) test performed:

- Tributary has (check all that apply):

 - [] Bed and banks
 - [] OHWM\(^6\) (check all indicators that apply):

 - [] the presence of litter and debris
 - [] destruction of terrestrial vegetation
 - [] sediment sorting
 - [] scour
 - [] multiple observed or predicted flow events
 - [] abrupt change in plant community

 - [] Discontinuous OHWM.\(^7\) Explain:

 - If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply):

 - [] High Tide Line indicated by:
 - [] Mean High Water Mark indicated by:

 - [] survey to available datum;
 - [] physical markings;
 - [] vegetation lines/changes in vegetation types.

- **(iii) Chemical Characteristics:**

 Characterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.).

 Explain:

 Identify specific pollutants, if known:

\(^6\)A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody’s flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break.

\(^7\)Ibid.
(iv) Biological Characteristics. Channel supports (check all that apply):
☐ Riparian corridor. Characteristics (type, average width):
☐ Wetland fringe. Characteristics:
☐ Habitat for:
☐ Federally Listed species. Explain findings:
☐ Fish/spawn areas. Explain findings:
☐ Other environmentally-sensitive species. Explain findings:
☐ Aquatic/wildlife diversity. Explain findings:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW
(i) Physical Characteristics:
(a) General Wetland Characteristics:
Properties:
☐ Wetland size: acres
☐ Wetland type. Explain:
☐ Wetland quality. Explain:
Project wetlands cross or serve as state boundaries. Explain:

(b) General Flow Relationship with Non-TNW:
Flow is: Pick List. Explain:
Surface flow is: Pick List
Characteristics:
☐ Dye (or other) test performed:

(c) Wetland Adjacency Determination with Non-TNW:
☐ Directly abutting
☐ Not directly abutting
☐ Discrete wetland hydrologic connection. Explain:
☐ Ecological connection. Explain:
☐ Separated by berm/barrier. Explain:

(d) Proximity (Relationship) to TNW:
Project wetlands are Pick List river miles from TNW.
Project waters are Pick List aerial (straight) miles from TNW.
Flow is from: Pick List.
Estimate approximate location of wetland as within the Pick List floodplain.

(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain:
Identify specific pollutants, if known:

(iii) Biological Characteristics. Wetland supports (check all that apply):
☐ Riparian buffer. Characteristics (type, average width):
☐ Vegetation type/percent cover. Explain:
☐ Habitat for:
☐ Federally Listed species. Explain findings:
☐ Fish/spawn areas. Explain findings:
☐ Other environmentally-sensitive species. Explain findings:
☐ Aquatic/wildlife diversity. Explain findings:

3. Characteristics of all wetlands adjacent to the tributary (if any)
All wetland(s) being considered in the cumulative analysis: Pick List
Approximately () acres in total are being considered in the cumulative analysis.
For each wetland, specify the following:

<table>
<thead>
<tr>
<th>Directly abuts? (Y/N)</th>
<th>Size (in acres)</th>
<th>Directly abuts? (Y/N)</th>
<th>Size (in acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Summarize overall biological, chemical and physical functions being performed: .

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below:

1. **Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs.** Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D: .

2. **Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs.** Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: .

3. **Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW.** Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: .

Documentation for the Record only: Significant nexus findings for seasonal RPWs and/or wetlands abutting seasonal RPWs: .

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY):

1. **TNWs and Adjacent Wetlands.** Check all that apply and provide size estimates in review area:
 - TNWs: linear feet width (ft), Or, acres.
 - Wetlands adjacent to TNWs: acres.

2. **RPWs that flow directly or indirectly into TNWs.**
Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial: Tributary 1 was determined to be a perennial RPW due to its observed flow, a firm sandy bottom, continuous OHWM, and a channel washed clear of vegetation and debris.

Tributaries of TNW where tributaries have continuous flow “seasonally” (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

Provide estimates for jurisdictional waters in the review area (check all that apply):
- Tributary waters: **1380** linear feet **10** width (ft).
- Other non-wetland waters: __acres.

Identify type(s) of waters:

3. Non-RPWs that flow directly or indirectly into TNWs.

 Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide estimates for jurisdictional waters within the review area (check all that apply):
 - Tributary waters: __linear feet __width (ft).
 - Other non-wetland waters: __acres.

 Identify type(s) of waters:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

 Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

 Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: Wetland 1 is bisected by the OWHM of the onsite perennial PRW identified as Tributary 1.

 Wetlands directly abutting an RPW where tributaries typically flow “seasonally.” Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW:

 Provide acreage estimates for jurisdictional wetlands in the review area: **5.7** acres.

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs.

 Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetlands in the review area: __acres.

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.

 Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide estimates for jurisdictional wetlands in the review area: __acres.

7. Impoundments of jurisdictional waters.

 As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional.
 - Demonstrate that impoundment was created from “waters of the U.S.,” or
 - Demonstrate that water meets the criteria for one of the categories presented above (1-6), or
 - Demonstrate that water is isolated with a nexus to commerce (see E below).

 Explain: Impoundment was excavated from wetlands

E. ISOLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY SUCH WATERS (CHECK ALL THAT APPLY):

 - which are or could be used by interstate or foreign travelers for recreational or other purposes.

8 See Footnote # 3.
9 To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook.
10 Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos.
Select the appropriate option(s) according to the guidelines provided. Explain:

Identify water body and summarize rationale supporting determination:

Provide estimates for jurisdictional waters in the review area (check all that apply):

- Tributary waters: linear feet width (ft).
- Other non-wetland waters: acres.
- Wetlands: acres.

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY):

- If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements.
- Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce.
- Prior to the Jan 2001 Supreme Court decision in “SWANCC,” the review area would have been regulated based solely on the “Migratory Bird Rule” (MBR).
- Waters do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction. Explain:
- Other: (explain, if not covered above): Located onsite are two upland excavated ditches that are not jurisdictional draining onsite uplands.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non-wetland waters (i.e., rivers, streams): linear feet width (ft).
- Lakes/ponds: acres.
- Other non-wetland waters: acres. List type of aquatic resource:
- Wetlands: acres.

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters (i.e., rivers, streams): linear feet width (ft).
- Lakes/ponds: acres.
- Other non-wetland waters: acres. List type of aquatic resource:
- Wetlands: acres.

SECTION IV: DATA SOURCES.

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: The site in question is shown on the enclosed map entitled “SAC-2018-00094 Moses Johnson / Jurisdictional Determination” and dated May 9, 2018, prepared by Johnson’s Environmental Consulting LLC.
- Data sheets prepared/submitted by or on behalf of the applicant/consultant.
- Office concurs with data sheets/delineation report.
- Office does not concur with data sheets/delineation report.
- Data sheets prepared by the Corps:
- Corps navigable waters’ study:
- U.S. Geological Survey Hydrologic Atlas:
- USGS NHD data.
- USGS 8 and 12 digit HUC maps.
- U.S. Geological Survey map(s). Cite scale & quad name: USGS Topographic maps / Longs Quad / depicts a mixture of forested and unforested areas as well as a solid blue line indicating perennial flow (Tributary 1).
- USDA Natural Resources Conservation Service Soil Survey. Citation: Horry County Soil Survey / pg 47 / depicts Younges soils (hydric for its entire mapped unit).
- National wetlands inventory map(s). Cite name: Horry County NWI / depicts PFO1/SS4Bd & PFO4/1B (palustrine wetlands) wetlands & U11 (uplands).
- State/Local wetland inventory map(s):
- FEMA/FIRM maps:
- 100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)
- Photographs: Aerial (Name & Date): 2016 Google Earth Imagery / 2006 SCDNR infrared imagery.
- Other (Name & Date): SV photos supplied by the agent and those taken by Corps personnel during site audit.
- Previous determination(s). File no. and date of response letter: Previous determination for an adjacent parcel dated 30 March 2007 / SAC-80-2004-0333.
B. ADDITIONAL COMMENTS TO SUPPORT JD: This form addresses a 39.31 acre tract that contains 9.47 acres of jurisdictional freshwater wetlands and 1380 linear feet of tributaries subject to the jurisdiction of this office. Limits of jurisdiction were established by the parameters set forth in the 1987 Wetland Delineation Manual, the 2010 Coastal Plain Supplement, and the OHWM (along with other tributary characteristics). Wetland 1 is bisected by the OWHM of the onsite tributary (PRPW Big Branch) that discharges into Buck Creek prior to discharging into the Waccamaw River, a TNW subject to the ebb and flow of the tide. It was determined that the onsite tributary flows at least 90% of the year under normal climatic conditions. During the site visit, a well-defined OWHM, firm channel bottom, and flowing water was observed. The stream geomorphic indicators of perennial flow was a channel within the bed and banks visible from aerial imagery. In addition, other hydrologic indicators depicted on USGS topographic maps, such as a blue line, indicate perennial flow and the tributary is clearly visible on Horry County LiDAR imagery. Aerial photos depict a signature of a defined channel discharging directly into Buck Creek prior to discharging into the Waccamaw River.

This site was assessed on 2 basis forms / Form 2 covers the significant nexus determination
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): May 16, 2018

B. DISTRICT OFFICE, FILE NUMBER, FILE NAME: JD Form 2 of 2; SAC-2018-00094 Moses Johnson

C. PROJECT LOCATION AND BACKGROUND INFORMATION:

- State: South Carolina
- County/parish/borough: Horry County
- City: Longs
- Center coordinates of site (lat/long in degree decimal format): Lat. 33.9348° N, Long. -78.7383° W
- Universal Transverse Mercator: NAD 83 UTM 17N
- Name of nearest waterbody: Big Branch
- Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Waccamaw River
- Name of watershed or Hydrologic Unit Code (HUC): Waccamaw River HUC: 0304020607

☐ Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request.
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc…) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY):

☐ Office (Desk) Determination.
☒ Field Determination. Date(s): 3 March 2018 & 23 March 2018

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION.

There are no “navigable waters of the U.S.” within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area. [Required]

☐ Waters subject to the ebb and flow of the tide.

☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce. Explain: .

B. CWA SECTION 404 DETERMINATION OF JURISDICTION.

There are “waters of the U.S.” within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required]

1. Waters of the U.S.
 a. Indicate presence of waters of U.S. in review area (check all that apply): 1
 - TNWs, including territorial seas
 - Wetlands adjacent to TNWs
 - Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 - Non-RPWs that flow directly or indirectly into TNWs
 - Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 - Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 - Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 - Impoundments of jurisdictional waters
 - Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area:
 Non-wetland waters: Tributary 2, 1210 linear feet; 5 width (ft) and/or 2 acres.
 Wetlands: 3(wetland 2 / 0.77 acres + wetland 3 / 3.0) acres.

 c. Limits (boundaries) of jurisdiction based on: 1987 Delineation Manual, Established by OHWM, Pick List
 Elevation of established OHWM (if known):

2. Non-regulated waters/wetlands (check if applicable): 2 [Including potentially jurisdictional features that upon assessment are NOT waters or wetlands]
 - Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional. Explain: non-regulated features are discussed on form 1 of 2.

1 Boxes checked below shall be supported by completing the appropriate sections in Section III below.
2 For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least “seasonally” (e.g., typically 3 months).
3 Supporting documentation is presented in Section III.F.
A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

Identify TNW: Waccamaw River.

Summarize rationale supporting determination: subject to the ebb and flow of the tide.

2. Wetland adjacent to TNW

Summarize rationale supporting conclusion that wetland is “adjacent”:

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY):

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4.

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:
 - Watershed size: 96577 Pick List
 - Drainage area: 60.55 acres
 - Average annual rainfall: approximately 48-50 inches
 - Average annual snowfall: 0 inches

 (ii) Physical Characteristics:
 - Relationship with TNW:
 - Tributary flows directly into TNW.
 - Tributary flows through 3 tributaries before entering TNW.

 Project waters are 2-5 river miles from TNW.
 Project waters are 1 (or less) river miles from RPW.
 Project waters are 2-5 aerial (straight) miles from TNW.
 Project waters are 1 (or less) aerial (straight) miles from RPW.
 Project waters cross or serve as state boundaries. Explain:

4 Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West.
Identify flow route to TNW: Water leaves wetland 2 and through a non-jurisdictional ditch that continues offsite and discharges into Tributary 2. Tributary 2 (onsite) discharges into Tributary 1 (Big Branch) which discharges into Buck Creek and discharges into the Waccaamw River.

Tributary stream order, if known: 1.

(b) General Tributary Characteristics (check all that apply):

Tributary is:
- Natural
- Artificial (man-made). Explain:

Tributary properties with respect to top of bank (estimate):
- Average width: 5 feet
- Average depth: 1 feet
- Average side slopes: 2:1.

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Cobbles
- Gravel
- Bedrock
- Vegetation. Type/% cover:
- Other. Explain:

Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain: Vegetated / stabilized banks.

Tributary geometry: Relatively straight.

Tributary gradient (approximate average slope): 0-2 %

(c) Flow:

Tributary provides for: Perennial flow

Estimate average number of flow events in review area/year: 20 (or greater)

Describe flow regime: Various recharges sources / events maintain a flowing tributary 90% of the year or greater.

Other information on duration and volume: .

Surface flow is: Discrete and confined. Characteristics: contained within a bed a bank system.

Subsurface flow: Unknown. Explain findings: .

Dye (or other) test performed: .

Tributary has (check all that apply):
- Bed and banks
- OHWM (check all indicators that apply):
 - clear, natural line impressed on the bank
 - changes in the character of soil
 - shelving
 - vegetation matted down, bent, or absent
 - leaf litter disturbed or washed away
 - sediment deposition
 - water staining
 - other (list): the presence of litter and debris
 - destruction of terrestrial vegetation
 - the presence of wrack line
 - sediment sorting
 - scour
 - multiple observed or predicted flow events
 - abrupt change in plant community

If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply):
- High Tide Line indicated by: oil or scum line along shore objects
- Mean High Water Mark indicated by: survey to available datum:
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other (list): vegetation lines/changes in vegetation types.

(iii) Chemical Characteristics:

5 Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW.

6A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody’s flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break.

7Ibid.
Characterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.).

Explain: Tributary is involved in the capture and attenuation of silt and nutrients from the surrounding area that is a mixture of development and forested areas. Water source is obtained from surface flow, groundwater recharge, and stormwater runoff in this tributary.

Identify specific pollutants, if known: None known, surrounding area is a mixture of forested and residential areas that create minimal pollutant inputs.

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian corridor. Characteristics (type, average width):
- Wetland fringe. Characteristics:
- Habitat for:
 - Federally Listed species. Explain findings:
 - Fish/spawn areas. Explain findings: Typical riparian structure that produces healthy aquatic and vegetated habitat.

 - Other environmentally-sensitive species. Explain findings:
 - Aquatic/wildlife diversity. Explain findings: Typical riparian structure that produces healthy aquatic and vegetated habitat.

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics:

Properties:
- Wetland size: 0.77 acres
- Wetland type. Explain: Natural palustrine wetland.

Project wetlands cross or serve as state boundaries. Explain: N/A.

(b) General Flow Relationship with Non-TNW:

Flow is: Ephemeral flow. Explain: Water leaving wetland 2 courses through an upland excavated ditch prior to discharging into Tributary 2.

Surface flow is: Discrete and confined

- Characteristics: confined within the bed and banks of both the ditch and tributary.

Subsurface flow: Unknown. Explain findings:

- Dye (or other) test performed:

(c) Wetland Adjacency Determination with Non-TNW:

- Directly abutting
- Not directly abutting
- Discrete wetland hydrologic connection. Explain: Water leaving wetland 2 courses through an upland excavated ditch prior to discharging into Tributary 2.

- Ecological connection. Explain:
- Separated by berm/barrier. Explain:

(d) Proximity (Relationship) to TNW

Project wetlands are 2-5 river miles from TNW.

Project waters are 1-2 aerial (straight) miles from TNW.

Flow is from: Wetland to navigable waters.

Estimate approximate location of wetland as within the 100 - 500-year floodplain.

(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain: No surface water was observed in wetland 2, only saturation below the soil surface. No oil, film, or other obvious pollutants were observed during the SV.

Identify specific pollutants, if known: N/A.

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian buffer. Characteristics (type, average width): Wetland 2 appears to be a fully functioning and healthy wetland.

- Vegetation type/percent cover. Explain:
- Habitat for:
 - Federally Listed species. Explain findings:
 - Fish/spawn areas. Explain findings:
 - Other environmentally-sensitive species. Explain findings:
 - Aquatic/wildlife diversity. Explain findings: Typical palustrine forested wetland habitat.
3. Characteristics of all wetlands adjacent to the tributary (if any)
 All wetland(s) being considered in the cumulative analysis: 4
 Approximately (8.25) acres in total are being considered in the cumulative analysis.
 For each wetland, specify the following:

<table>
<thead>
<tr>
<th>Directly abuts? (Y/N)</th>
<th>Size (in acres)</th>
<th>Directly abuts? (Y/N)</th>
<th>Size (in acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>3.0</td>
<td>Y</td>
<td>0.46</td>
</tr>
<tr>
<td>N</td>
<td>4.02</td>
<td>N</td>
<td>0.77</td>
</tr>
</tbody>
</table>

 Summarize overall biological, chemical and physical functions being performed: The similarly situated wetlands contribute vital biological, chemical, and physical functions to the downstream TNW. This wetland system enhances wildlife diversity, acts as catch basins filtering sediment and pollution from the surrounding uplands, supports the downstream food web, and provides nutrient fixation, flood attenuation, and flow maintenance functions. (Wetlands adjacent to the tributary were determined by using a combination of NWI maps and the wetlands delineated as part of this determination).

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below:

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D: .

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: The non-RPW that is assessed in this form, along with all similarly situated adjacent freshwater wetlands are collectively performing functions consistent with the following: Biologically, wetlands adjacent to the non-RPW include depressional wetlands. As such a variety of biological functions are being performed which include providing breeding grounds and shelter for aquatic species and foraging areas for wetland dependent species. These wetlands and the adjacent non-RPW are essential in providing organic carbons in the form of their collective primary productivity to downstream waters, resulting in the nourishment of the downstream food web. Chemically, the sRPW and adjacent wetlands are providing the important collective functions of removal of excess nutrients into the downstream TNW. These pollutants, which are contributed to by runoff from surrounding uplands are prevented from being discharged downstream due to suspended sediments and other pollutants being retained within the wetlands. The low velocity of and gradient of the non-RPW also contributes to the removal of pollutants because the suspended pollutants have time to settle out of the water. This reduces nitrogen and phosphorous loading downstream and effectively prevents oxygen
depletion that can result from eutrophication. Physically, the non-RPW and adjacent wetlands are collectively performing flow maintenance functions, including retaining runoff inflow and storing rain water, temporarily. Flow maintenance results in the reduction of downstream peak flows (discharge and volume), helping to maintain seasonal flow volumes and reducing the frequency of overbank events which flood adjacent properties. Increased water velocity also increases the amount of sediments and other pollutants in the TNW. Based on the collective functions described above and their importance to the biological, chemical, and physical integrity of the traditional navigable waters of the Waccamaw River it has been determined that there is a significant nexus between the relevant reach of the tributary and all adjacent wetlands to the downstream TNW.

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

Documentation for the Record only: Significant nexus findings for seasonal RPWs and/or wetlands abutting seasonal RPWs:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY):

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs: linear feet width (ft), Or, acres.
 - Wetlands adjacent to TNWs: acres.

2. RPWs that flow directly or indirectly into TNWs.
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial: Tributary 2 was determined to be a perennial RPW due to its observed flow, a firm sandy bottom, continuous OHWM, and a channel washed clear of vegetation and debris.

 Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters: 1210 linear feet 5 width (ft).
 - Other non-wetland waters: acres.
 - Identify type(s) of waters:

3. Non-RPWs\(^{3}\) that flow directly or indirectly into TNWs.

 Provide estimates for jurisdictional waters within the review area (check all that apply):
 - Tributary waters: linear feet width (ft).
 - Other non-wetland waters: acres.
 - Identify type(s) of waters:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: Wetland 3 is bisected by the OHWM of Tributary 2 (onsite).

 Provide acreage estimates for jurisdictional wetlands in the review area: 3.0 (Wetland 3) acres.

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetlands in the review area: 0.77 (Wetland 2) acres.

\(^{3}\)See Footnote # 3.
6. **Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.**
 - Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide estimates for jurisdictional wetlands in the review area: __________ acres.

7. **Impoundments of jurisdictional waters.**
 - As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional.
 - Demonstrate that impoundment was created from “waters of the U.S.,” or
 - Demonstrate that water meets the criteria for one of the categories presented above (1-6), or
 - Demonstrate that water is isolated with a nexus to commerce (see E below).

 Explain:

 E. ISOLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY SUCH WATERS (CHECK ALL THAT APPLY):
 - which are or could be used by interstate or foreign travelers for recreational or other purposes.
 - from which fish or shellfish are or could be taken and sold in interstate or foreign commerce.
 - which are or could be used for industrial purposes by industries in interstate commerce.
 - Interstate isolated waters. Explain: __________
 - Other factors. Explain: __________

 Identify water body and summarize rationale supporting determination: __________

 Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters: linear feet width (ft).
 - Other non-wetland waters: __________ acres.
 - Identify type(s) of waters: __________
 - Wetlands: __________ acres.

F. **NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY):**
 - If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements.
 - Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce.
 - Prior to the Jan 2001 Supreme Court decision in “SWANCC,” the review area would have been regulated based solely on the “Migratory Bird Rule” (MBR).
 - Waters do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction. Explain: __________
 - Other: (explain, if not covered above): __________

 Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):
 - Non-wetland waters (i.e., rivers, streams): linear feet width (ft).
 - Lakes/ponds: __________ acres.
 - Other non-wetland waters: __________ acres. List type of aquatic resource: __________
 - Wetlands: __________ acres.

 Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):
 - Non-wetland waters (i.e., rivers, streams): linear feet width (ft).
 - Lakes/ponds: __________ acres.
 - Other non-wetland waters: __________ acres. List type of aquatic resource: __________
 - Wetlands: __________ acres.

SECTION IV: DATA SOURCES.

9 To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook.
10 Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos.
A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☒ Data sheets prepared/submitted by or on behalf of the applicant/consultant.
☐ Office concurs with data sheets/delineation report.
☐ Office does not concur with data sheets/delineation report.
☒ Data sheets prepared by the Corps.
☒ Corps navigable waters' study.
☐ USGS NHD data.
☐ USGS 8 and 12 digit HUC maps.
☒ US Geological Survey map(s). Cite scale & quad name: USGS Topographic maps / Longs Quad / depicts a mixture of forested and unforested areas as well as a solid blue line indicating perennial flow (Tributary 1).
☒ USDA Natural Resources Conservation Service Soil Survey. Citation: Horry County Soil Survey / pg 47 / depicts Younges soils (hydric for its entire mapped unit).
☒ National wetlands inventory map(s). Cite name: Horry County NWI / depicts PFO1/SS4Bd & PFO4/1B (palustrine wetlands) wetlands & U11 (uplands).
☐ State/Local wetland inventory map(s).
☐ FEMA/FIRM maps.
☐ 100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)
☒ Photographs: ☒ Aerial (Name & Date): 2016 Google Earth Imagery / 2006 SCDNR infrared imagery.
☐ Other (Name & Date): SV photos supplied by the agent and those taken by Corps personnel during site audit.
☐ Applicable/supporting case law.
☐ Applicable/supporting scientific literature.
☒ Other information (please specify): Horry County LiDAR data.

B. ADDITIONAL COMMENTS TO SUPPORT JD: This form addresses a 39.31 acre tract that contains 3.77 acres (Wetland 2 / 0.77 acres & Wetland 3 / 3.0) of jurisdictional freshwater wetlands and 1210 linear feet of tributaries subject to the jurisdiction of this office. Limits of jurisdiction were established by the parameters set forth in the 1987 Wetland Delineation Manual, the 2010 Coastal Plain Supplement, and the OHWM (along with other tributary characteristics). Wetland 3 is bisected by the OHWM of the onsite tributary (unnamed PRPW) that discharges into Big Branch before then Buck Creek prior to discharging into the Waccamaw River, a TNW subject to the ebb and flow of the tide. It was determined that the onsite tributary flows at least 90% of the year under normal climatic conditions. During the site visit, a well-defined OHWM, firm channel bottom, and flowing water was observed. The stream geomorphic indicators of perennial flow was a channel within the bed and banks visible from aerial imagery. In addition, other hydrologic indicators depicted on USGS topographic maps, such as a blue line, indicate perennial flow and the tributary is clearly visible on Horry County LiDAR imagery. Aerial photos depict a signature of a defined channel discharging directly into Big Branch and then Buck Creek prior to discharging into the Waccamaw River.

Wetland 2 discharges into a non-jurisdictional feature (ditch) which courses south, continuing offsite before turning east and discharging into Tributary 2, an unnamed perennial RPW. Tributary 2 flows north, through the site and discharges directly into Tributary 1 (PRPW / Big Branch) which discharges into the Waccamaw River (TNW).

This site was assessed on 2 basis forms.