SECTION I: BACKGROUND INFORMATION
A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): November 18, 2015
B. DISTRICT OFFICE, FILE NAME, AND NUMBER: JD Form 1 of 2; SAC # 2015-01250-4S - Freedom Solar Site
C. PROJECT LOCATION AND BACKGROUND INFORMATION:
 State: South Carolina
 County/parish/borough: Dillon
 City: Nichols
 Center coordinates of site (lat/long in degree decimal format): Lat. 34.287291° N, Long. -79.149344° W
 Universal Transverse Mercator: NAD 83
 Name of nearest waterbody: Crutchlow Branch
 Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Little Pee Dee River
 Name of watershed or Hydrologic Unit Code (HUC): Lumber River HUC: 03040203_13
 Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request.
 D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY):
 ☒ Office (Desk) Determination. Date:
 ☒ Field Determination. Date(s): October 26, 2015

SECTION II: SUMMARY OF FINDINGS
A. RHA SECTION 10 DETERMINATION OF JURISDICTION.
 There are no “navigable waters of the U.S.” within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area. [Required]
 □ Waters subject to the ebb and flow of the tide.
 □ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.
 Explain:

B. CWA SECTION 404 DETERMINATION OF JURISDICTION.
 There are “waters of the U.S.” within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required]
 1. Waters of the U.S.
 a. Indicate presence of waters of U.S. in review area (check all that apply):
 □ TNWs, including territorial seas
 □ Wetlands adjacent to TNWs
 □ Relatively permanent waters2 (RPWs) that flow directly or indirectly into TNWs
 □ Non-RPWs that flow directly or indirectly into TNWs
 □ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 □ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 □ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 □ Impoundments of jurisdictional waters
 □ Isolated (interstate or intrastate) waters, including isolated wetlands
 b. Identify (estimate) size of waters of the U.S. in the review area:
 Non-wetland waters: linear feet: width (ft) and/or acres.
 Wetlands: 0.61 acres.
 c. Limits (boundaries) of jurisdiction based on: 1987 Delineation Manual, Pick List, Pick List
 Elevation of established OHWM (if known):
 2. Non-regulated waters/wetlands (check if applicable):3 □ [Including potentially jurisdictional features that upon assessment are NOT waters or wetlands]
 □ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional.
 Explain: Five upland excavated drainage ditches (Ditch A - Ditch E) are located within the project area and are

1 Boxes checked below shall be supported by completing the appropriate sections in Section III below.
2 For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least "seasonally" (e.g., typically 3 months).
3 Supporting documentation is presented in Section III.F.
Ditches A, C and E are agricultural drainage ditches located within the fields on site. These ditches were determined to have been excavated out of uplands and to drain only uplands. They are not depicted as blue line features on the USGS topo maps and they were observed to be overgrown with woody vegetation and showed no indicators of flow. Ditch B is an agricultural drainage feature located within the field onsite and is depicted as a dashed blue line on the USGS topographic map. Observation of this ditch in the field revealed that it was overgrown with woody vegetation and did not contain any indicators of flow, nor did it have an OHWM. This ditch was determined to have been excavated out of uplands for the purpose of draining uplands and is determined to be non-jurisdictional. Ditch E is a roadside drainage ditch located along Ayers Loop. This ditch was overgrown with woody vegetation did not have an OHWM and did not contain any indicators of flow. Ditch E is determined to have been excavated out of uplands and to drain only uplands and therefore is not a jurisdictional feature.

SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: Little Pee Dee River.
 Summarize rationale supporting determination: According to Report No. 12 of the 1977 Charleston District Navigability Study on the Little Pee Dee River Basin, the Little Pee Dee River is presently classified "navigable waters of the U.S." from its confluence with the Great Pee Dee River (R.M. 33.2) to R.M. 99.0 at Little Rock, South Carolina.

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is “adjacent”:

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY):

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4.

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody4 is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:
 Watershed size:
 Drainage area:
 Average annual rainfall: inches
 Average annual snowfall: inches

 (ii) Physical Characteristics:
 (a) Relationship with TNW:

4 Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West.
Tributary flows directly into TNW.

Tributary flows through Pick List tributaries before entering TNW.

Project waters are Pick List river miles from TNW.
Project waters are Pick List river miles from RPW.
Project waters are Pick List aerial (straight) miles from TNW.
Project waters are Pick List aerial (straight) miles from RPW.
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW:

Tributary stream order, if known:

(b) General Tributary Characteristics (check all that apply):

Tributary is: □ Natural □ Artificial (man-made). Explain:
□ Manipulated (man-altered). Explain:

Tributary properties with respect to top of bank (estimate):
Average width: ______ feet
Average depth: ______ feet
Average side slopes: Pick List.

Primary tributary substrate composition (check all that apply):
□ Silts □ Sands □ Gravel □ Concrete
□ Cobbles □ Muck □ Vegetation. Type % cover: ______
□ Bedrock □ Other. Explain:

Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain:
Presence of run/riffle/pool complexes. Explain:
Tributary geometry: Pick List.
Tributary gradient (approximate average slope): %

(c) Flow:
Tributary provides for: Pick List
Estimate average number of flow events in review area/year: Pick List
Describe flow regime:
Other information on duration and volume:
Surface flow is: Pick List. Characteristics:
Subsurface flow: Pick List. Explain findings:
□ Dye (or other) test performed:

Tributary has (check all that apply):
□ Bed and banks
□ OHWM6 (check all indicators that apply):
□ clear, natural line impressed on the bank
□ the presence of litter and debris
□ changes in the character of soil
□ destruction of terrestrial vegetation
□ shelving
□ the presence of wrack line
□ vegetation matted down, bent, or absent
□ sediment sorting
□ leaf litter disturbed or washed away
□ scour
□ sediment deposition
□ other (list):
□ water staining
□ multiple observed or predicted flow events
□ other (list):
□ abrupt change in plant community
□ Dye (or other) test performed:

If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply):
□ High Tide Line indicated by:
□ mean High Water Mark indicated by:
□ oil or scum line along shore objects
□ survey to available datum;
□ fine shell or debris deposits (foreshore)
□ physical markings;
□ the presence of litter and debris
□ destruction of terrestrial vegetation
□ the presence of wrack line
□ sediment sorting
□ scour
□ multiple observed or predicted flow events
□ abrupt change in plant community

Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW.

A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody's flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break.

Ibid.
(iii) Chemical Characteristics:
Characterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.).
Explain:
Identify specific pollutants, if known:
(iv) Biological Characteristics. Channel supports (check all that apply):
- Riparian corridor. Characteristics (type, average width):
- Wetland fringe. Characteristics:
- Habitat for:
 - Federally Listed species. Explain findings:
 - Fish/spawn areas. Explain findings:
 - Other environmentally-sensitive species. Explain findings:
 - Aquatic/wildlife diversity. Explain findings:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:
(a) General Wetland Characteristics:
Properties:
- Wetland size: acres
- Wetland type. Explain:
- Wetland quality. Explain:
- Project wetlands cross or serve as state boundaries. Explain:
(b) General Flow Relationship with Non-TNW:
Flow is: Pick List. Explain:
- Surface flow is: Pick List
 Characteristics:
- Subsurface flow: Pick List. Explain findings:
 - Dye (or other) test performed:
(c) Wetland Adjacency Determination with Non-TNW:
- Directly abutting
- Not directly abutting
 - Discrete wetland hydrologic connection. Explain:
 - Ecological connection. Explain:
 - Separated by berm/barrier. Explain:
(d) Proximity (Relationship) to TNW:
- Project wetlands are Pick List river miles from TNW.
- Project waters are Pick List aerial (straight) miles from TNW.
- Flow is from: Pick List.
- Estimate approximate location of wetland as within the Pick List floodplain.

(ii) Chemical Characteristics:
- Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain:
- Identify specific pollutants, if known:

(iii) Biological Characteristics. Wetland supports (check all that apply):
- Riparian buffer. Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
- Habitat for:
 - Federally Listed species. Explain findings:
 - Fish/spawn areas. Explain findings:
 - Other environmentally-sensitive species. Explain findings:
 - Aquatic/wildlife diversity. Explain findings:

3. Characteristics of all wetlands adjacent to the tributary (if any)
All wetland(s) being considered in the cumulative analysis: Pick List
- Approximately () acres in total are being considered in the cumulative analysis.
For each wetland, specify the following:

<table>
<thead>
<tr>
<th>Directly abuts? (Y/N)</th>
<th>Size (in acres)</th>
<th>Directly abuts? (Y/N)</th>
<th>Size (in acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Summarize overall biological, chemical and physical functions being performed:

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below:

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D:

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

Documentation for the Record only: Significant nexus findings for seasonal RPWs and/or wetlands abutting seasonal RPWs:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY):

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs: linear feet width (ft), Or, acres.
 - Wetlands adjacent to TNWs: acres.

2. RPWs that flow directly or indirectly into TNWs.
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial: The off-site tributary was inaccessible during a site visit conducted on October 26, 2015. It was
determined to be an RPW with perennial flow by review of available desktop resources to this office to include: aerial photographs, NWIs, soil survey information, Dillon County LiDAR and USGS topographic maps. Aerial photographs depict a sinuous shaded linear feature that has been impounded in several places. NWIs depict the RPW as being bordered on all sides by Seasonally flooded palustrine forest. USGS topographic maps depict a named solid blue line feature (Crutchlow Creek) and soil survey information depicts all hydric soils along this feature. Dillon County LiDAR depicts a sinuous defined channel with bed and banks. Based on the previously mentioned evidence, this perennial RPW was determined to have flow at least 90% of the year under normal conditions.

☐ Tributaries of TNW where tributaries have continuous flow “seasonally” (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

Provide estimates for jurisdictional waters in the review area (check all that apply):

☐ Tributary waters: linear feet width (ft).
☐ Other non-wetland waters: acres.

Identify type(s) of waters:

3. Non-RPWs that flow directly or indirectly into TNWs.

☐ Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional waters within the review area (check all that apply):

☐ Tributary waters: linear feet width (ft).
☐ Other non-wetland waters: acres.

Identify type(s) of waters:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

☒ Wetlands directly abutting an RPW and thus are jurisdictional as adjacent wetlands.

☐ Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: Wetlands onsite were determined to continue offsite during a site visit conducted on October 26, 2015. A review of aerial photographs, NWIs, Dillon County Soil Survey information, Dillon County LiDAR and USGS topographic survey information revealed that the wetland was part of a larger wetland system that is contiguous and directly abuts Crutchlow Creek to the west. Based on all of the available desktop resources to this office there are no observable natural or man-made barriers to obstruct the biological, physical and/or chemical connection between the wetlands and the pRPW.

☐ Wetlands directly abutting an RPW where tributaries typically flow “seasonally.” Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW:

Provide acreage estimates for jurisdictional wetlands in the review area: 0.61 acres.

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs.

☐ Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetlands in the review area: acres.

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.

☐ Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetlands in the review area: acres.

7. Impoundments of jurisdictional waters.

As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional.

☒ Demonstrate that impoundment was created from “waters of the U.S.,” or
☒ Demonstrate that water meets the criteria for one of the categories presented above (1-6), or
☒ Demonstrate that water is isolated with a nexus to commerce (see E below).

Explain: One Impoundment of a WOUS is located within the project boundary; this aquatic resource is discussed on JD Basis Form 2 of 2.

See Footnote # 3.
9 To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook.
E. ISOLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE; INCLUDING ANY SUCH WATERS (CHECK ALL THAT APPLY):[18]

☐ which are or could be used by interstate or foreign travelers for recreational or other purposes.
☐ from which fish or shellfish are or could be taken and sold in interstate or foreign commerce.
☐ which are or could be used for industrial purposes by industries in interstate commerce.
☐ Interstate isolated waters. Explain:
☐ Other factors. Explain:

Identify water body and summarize rationale supporting determination:

Provide estimates for jurisdictional waters in the review area (check all that apply):

☐ Tributary waters: linear feet width (ft).
☐ Other non-wetland waters: acres.
Identify type(s) of waters:
☐ Wetlands: acres.

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY):

☐ If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements.
☐ Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce.
☐ Prior to the Jan 2001 Supreme Court decision in “SWANCC,” the review area would have been regulated based solely on the “Migratory Bird Rule” (MBR).
☐ Waters do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction. Explain:
☐ Other: (explain, if not covered above): Five ditches are located within the boundaries of the project area. These ditches were determined to have been excavated out of uplands and to drain only uplands, therefore these features are determined to be non-jurisdictional.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non-wetland waters (i.e., rivers, streams): linear feet width (ft).
☐ Lakes/ponds: acres.
☐ Other non-wetland waters: acres. List type of aquatic resource:
☐ Wetlands: acres.

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters (i.e., rivers, streams): linear feet width (ft).
☐ Lakes/ponds: acres.
☐ Other non-wetland waters: acres. List type of aquatic resource:
☐ Wetlands: acres.

SECTION IV: DATA SOURCES.

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☒ Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: The project area is depicted on a sketch prepared and submitted by ERM titled “FIGURE 1. / WETLAND DELINEATION MAP / Freedom Solar Site / Nichols, Dillon County, South Carolina,” and dated October 30, 2015.
☒ Data sheets prepared/submitted by or on behalf of the applicant/consultant.
☒ Office concurs with data sheets/delineation report.
☐ Office does not concur with data sheets/delineation report.
☐ Data sheets prepared by the Corps:
☐ USGS NHD data.
☒ USGS 8 and 12 digit HUC maps.

[18] Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos.
U.S. Geological Survey map(s). Cite scale & quad name: Lakeview Quad. The USGS topographic survey information within Lakeview Quad depicts the project area as cleared uplands abutting a large wooded area to the west and bisected by a dashed blue line feature that flows into an UNT of Ashpole Swamp. A site visit conducted on October 26, 2015 revealed that the dashed blue line feature was an upland excavated ditch overgrown with vegetation, draining only uplands, therefore a non-jurisdictional feature.

USDA Natural Resources Conservation Service Soil Survey. Citation: Dillon County Soil Survey Sheet 32: Dillon County Soil Survey Information depicts the project area as being comprised of the following soil types: Persanti fine sandy loam which is a moderately well drained partially hydric soil, Fuquay sand which is a well drained non-hydric soil, Coxville fine sandy loam which is a poorly drained all hydric soil, Dothan loamy fine sand which is a well drained non hydric soil, Claredon loamy sand which is a moderately well drained partially hydric soil and Summerton loamy fine sand which is a well drained non-hydric soil. The delineated wetland addressed on this form is mapped Dothan however a site visit conducted on October 26, 2015 revealed that the soil more closely resembled the adjacent soil type located just off site which is Rains fine sandy loam and is a poorly drained all hydric soil.

National wetlands inventory map(s). Cite name: U21, PF04Bd, and PUBHx: The NWIS depict the project area as majority agricultural uplands, however saturated palustrine forest that have been partially ditched or drained are depicted along the western project boundary and a feature mapped as palustrine unconsolidated bottom permanently flooded and excavated is located to the northeast corner of the site. The delineated wetland addressed on this form is mapped as saturated palustrine forest that have been partially ditched or drained.

State/Local wetland inventory map(s): FEMA/FIRM maps: 100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)

Photographs: ☒ Aerial (Name & Date): Dillon County Aerial Index 99:11222:83 and SCDNR 2006. or ☒ Other (Name & Date): Sheets 1-12 of 12 of site photos taken and submitted by ERM titled "Appendix B / Photographic Log," and Site photos taken by the Corps dated October 26, 2015.

Previous determination(s). File no. and date of response letter:

Applicable/supporting case law:

Applicable/supporting scientific literature:

Other information (please specify): Dillon County 2005 LiDAR.

NRCS WETS data for Dillon County: During a site visit conducted on October 26, 2015 climatic conditions were determined to be within the range of normal.

B. ADDITIONAL COMMENTS TO SUPPORT JD: This form addresses a 0.61 acre jurisdictional wetland located on a 55 acre tract. Limits of jurisdiction were established by the parameters set forth in the 1987 Wetland Delineation Manual and the 2010 Coastal Plain Supplement. During a site visit conducted on October 26, 2015, the delineated wetland was observed to have hydric soils and indicators of wetland hydrology to include saturation, inundation, oxidized rhizospheres along living root channels and sphagnum moss. Wetlands onsite were determined to continue offsite. A review of aerial photographs, NWIs, Dillon County Soil Survey information, Dillon County LiDAR and USGS topographic survey information revealed that the wetland was part of a larger wetland system that is contiguous and directly abuts Crutchlow Creek to the west. Based on all of the available desktop resources to this office there are no observable natural or man-made barriers to obstruct the biological, physical and/or chemical connection between the wetlands and Crutchlow Creek (an offsite RPW). The off-site RPW was inaccessible during the site visit. It was determined to be an RPW with perennial flow by review of available desktop resources to this office to include: aerial photographs, NWIs, soil survey information, Dillon County LiDAR and USGS topographic maps. Aerial photographs depict a sinuous shaded linear feature that has been impounded in several places. NWIs depict the RPW as being bordered on all sides by seasonally flooded palustrine forest. USGS topographic maps depict a named solid blue line feature (Crutchlow Creek) and soil survey information depicts all hydric soils along this feature. Dillon County LiDAR depicts a sinuous defined channel with bed and banks. Based on the previously mentioned evidence, this perennial RPW was determined to have flow at least 90% of the year under normal conditions.

Five upland excavated drainage ditches are located on-site. These ditches were excavated out of uplands and drain only uplands. They did not have any indicators of flow, they did not have an OHWM, and they were overgrown with vegetation, therefore these ditches were determined to be non-jurisdictional features.

One jurisdictional impoundment of a WOUS is documented on Basis Form 2 of 2.
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): November 18, 2015

B. DISTRICT OFFICE, FILE NAME, AND NUMBER: JD Form 2 of 2; SAC # 2015-01250-4S - Freedom Solar Site

C. PROJECT LOCATION AND BACKGROUND INFORMATION:

- State: South Carolina
- County/parish/borough: Dillon
- City: Nichols
- Center coordinates of site (lat/long in degree decimal format): Lat. 34.287291° N, Long. -79.149344° W
- Universal Transverse Mercator: NAD 83

- Name of nearest waterbody: Ashpole Swamp
- Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Lumber River
- Name of watershed or Hydrologic Unit Code (HUC): Lumber River HUC: 03040203_13

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY):

- Office (Desk) Determination. Date:
- Field Determination. Date(s): October 26, 2015

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION.

There are no "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area. [Required]

- Waters subject to the ebb and flow of the tide.
- Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION.

There are "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required]

1. Waters of the U.S.
 a. Indicate presence of waters of U.S. in review area (check all that apply): 1
 - TNWs, including territorial seas
 - Wetlands adjacent to TNWs
 - Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 - Non-RPWs that flow directly or indirectly into TNWs
 - Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 - Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 - Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 - Impoundments of jurisdictional waters
 - Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area:
 Non-wetland waters: linear feet: width (ft) and/or 0.18 acres.
 Wetlands: acres.

 c. Limits (boundaries) of jurisdiction based on: 1987 Delineation Manual, Established by OHWM, Pick List
 Elevation of established OHWM (if known):

2. Non-regulated waters/wetlands (check if applicable): 2 [Including potentially jurisdictional features that upon assessment are NOT waters or wetlands]

1 Boxes checked below shall be supported by completing the appropriate sections in Section III below.
2 For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least "seasonally" (e.g., typically 3 months).
3 Supporting documentation is presented in Section III.F.
Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional. Explain: Five upland excavated drainage ditches (Ditch A - Ditch E) are located within the project area and are determined to be non-jurisdictional. These ditches are addressed in detail on Basis Form 1 of 2.

SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
Identify TNW: Lumber River.

Summarize rationale supporting determination: According to Report No. 13 of the 1977 Charleston District Navigability Study on the Lumber River Basin, the Lumber River is presently classified " navigable waters of the U.S." from its mouth at R.M. 58.0 on the Little Pee Dee River to Lumberton, NC (R.M. 63.4).

2. Wetland adjacent to TNW
Summarize rationale supporting conclusion that wetland is "adjacent":

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY):

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are "relatively permanent waters" (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4.

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

(i) General Area Conditions:
 Watershed size: Pick List;
 Drainage area: Pick List
 Average annual rainfall: inches
 Average annual snowfall: inches

(ii) Physical Characteristics:
 (a) Relationship with TNW:
 □ Tributary flows directly into TNW.
 □ Tributary flows through Pick List tributaries before entering TNW.

 Project waters are Pick List river miles from TNW.
 Project waters are Pick List river miles from RPW.
 Project waters are Pick List aerial (straight) miles from TNW.
 Project waters are Pick List aerial (straight) miles from RPW.

4 Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West.
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW:

Tributary stream order, if known:

(b) General Tributary Characteristics (check all that apply):

- Tributary is:
 - Natural
 - Artificial (man-made). Explain:
 - Manipulated (man-altered). Explain:

- Tributary properties with respect to top of bank (estimate):
 - Average width: feet
 - Average depth: feet
 - Average side slopes: Pick List.

- Primary tributary substrate composition (check all that apply):
 - Silts
 - Cobble
 - Bedrock
 - Vegetation. Type% cover:
 - Concrete
 - Muck

- Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain:

- Presence of run/riffle/pool complexes. Explain:

- Tributary geometry: Pick List. []

- Tributary gradient (approximate average slope): %

(c) Flow:

- Tributary provides for: Pick List.

- Estimate average number of flow events in review area/year: Pick List

- Describe flow regime:

- Other information on duration and volume:

- Surface flow is: Pick List. Characteristics:

- Subsurface flow: Pick List. Explain findings:
 - Dye (or other) test performed:

- Tributary has (check all that apply):
 - Bed and banks
 - OHWM (check all indicators that apply):
 - clear, natural line impressed on the bank
 - changes in the character of soil
 - shelving
 - vegetation matted down, bent, or absent
 - leaf litter disturbed or washed away
 - sediment deposition
 - water staining
 - other (list):
 - the presence of litter and debris
 - destruction of terrestrial vegetation
 - the presence of wrack line
 - sediment sorting
 - scour
 - multiple observed or predicted flow events
 - abrupt change in plant community
 - Discontinuous OHWM. Explain:

- If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply):
 - High Tide Line indicated by:
 - oil or scum line along shore objects
 - fine shell or debris deposits (foreshore)
 - physical markings/characteristics
 - tidal gauges
 - other (list):
 - Mean High Water Mark indicated by:
 - survey to available datum;
 - physical markings;
 - vegetation lines/changes in vegetation types.

(iii) Chemical Characteristics:

- Characterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.).

- Explain:

5 Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW.
6 A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody’s flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break.
7 Ibid.
Identify specific pollutants, if known:
(iv) Biological Characteristics. Channel supports (check all that apply):
- Riparian corridor. Characteristics (type, average width):
- Wetland fringe. Characteristics:
- Habitat for:
 - Federally Listed species. Explain findings:
 - Fish/spawn areas. Explain findings:
 - Other environmentally-sensitive species. Explain findings:
 - Aquatic/wildlife diversity. Explain findings:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:
(a) General Wetland Characteristics:
 Properties:
 - Wetland size: acres
 - Wetland type. Explain:
 - Wetland quality. Explain:
 Project wetlands cross or serve as state boundaries. Explain:

(b) General Flow Relationship with Non-TNW:
 Flow is: Pick List. Explain:
 Surface flow is: Pick List
 Characteristics:
 - Subsurface flow: Pick List. Explain findings:
 - Dye (or other) test performed:

(c) Wetland Adjacency Determination with Non-TNW:
 - Directly abutting
 - Not directly abutting
 - Discrete wetland hydrologic connection. Explain:
 - Ecological connection. Explain:
 - Separated by berm/barrier. Explain:

(d) Proximity (Relationship) to TNW
 Project wetlands are Pick List river miles from TNW.
 Project waters are Pick List aerial (straight) miles from TNW.
 Flow is from: Pick List.
 Estimate approximate location of wetland as within the Pick List floodplain.

(ii) Chemical Characteristics:
 Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain:
 Identify specific pollutants, if known:

(iii) Biological Characteristics. Wetland supports (check all that apply):
- Riparian buffer. Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
- Habitat for:
 - Federally Listed species. Explain findings:
 - Fish/spawn areas. Explain findings:
 - Other environmentally-sensitive species. Explain findings:
 - Aquatic/wildlife diversity. Explain findings:

3. Characteristics of all wetlands adjacent to the tributary (if any)
 All wetland(s) being considered in the cumulative analysis: Pick List
 Approximately () acres in total are being considered in the cumulative analysis.
For each wetland, specify the following:

<table>
<thead>
<tr>
<th>Directly abuts? (Y/N)</th>
<th>Size (in acres)</th>
<th>Directly abuts? (Y/N)</th>
<th>Size (in acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Summarize overall biological, chemical and physical functions being performed:

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below:

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D:

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

Documentation for the Record only: Significant nexus findings for seasonal RPWs and/or wetlands abutting seasonal RPWs:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY):

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - [] TNWs: linear feet width (ft), Or, acres.
 - [] Wetlands adjacent to TNWs: acres.

2. RPWs that flow directly or indirectly into TNWs.
 - [] Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial:
□ Tributaries of TNW where tributaries have continuous flow “seasonally” (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

Provide estimates for jurisdictional waters in the review area (check all that apply):
□ Tributary waters: linear feet width (ft).
□ Other non-wetland waters: acres.
Identify type(s) of waters:

3. Non-RPWs that flow directly or indirectly into TNWs.
□ Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional waters within the review area (check all that apply):
□ Tributary waters: linear feet width (ft).
□ Other non-wetland waters: acres.
Identify type(s) of waters:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
□ Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
□ Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW:

□ Wetlands directly abutting an RPW where tributaries typically flow “seasonally.” Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW:

Provide acreage estimates for jurisdictional wetlands in the review area: 0.61 acres.

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs.
□ Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetlands in the review area: acres.

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
□ Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetlands in the review area: acres.

7. Impoundments of jurisdictional waters. To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook.
□ Demonstrate that impoundment was created from “waters of the U.S.,” or
□ Demonstrate that water meets the criteria for one of the categories presented above (1-6), or
□ Demonstrate that water is isolated with a nexus to commerce (see E below).

Explain: Wetlands onsite, from which the impoundment was excavated, were determined to continue offsite during a site visit conducted on October 26, 2015. A review of aerial photographs, Dillon County LiDAR and USGS topographic survey information revealed that the wetland was part of a larger wetland system that is contiguous and directly abuts an UNT of Ashpole swamp (pRPW) to the north and Ashpole Swamp (pRPW) to the west. Based on all of the available desk top resources to this office there are no observable natural or man-made barriers to obstruct the biological, physical and/or chemical connection between the wetlands and the pRPWs. The off-site tributaries were determined to be RPWs with perennial flow by review of available desktop resources to this office to include: aerial photographs, NWIs, soil survey information, Dillon County LiDAR and USGS toposgraphic maps. Aerial photographs depict sinuous shaded linear features. Ashpole Swamp is a large braided River System. NWIs depict the RPWs as being permanently flooded palustrine forest. USGS toposgrahic maps depict a 2nd order dashed blue line feature located in a naturally low lying drainage area that flows unobstructed into Ashpole Swamp to the north and a named braided solid blue line feature (Ashpole Swamp) to the east. Soil survey information depicts all hydric soils along these features. Dillon County LiDAR depicts sinuous defined channels with bed and banks along all pRPW features and a defined drainage feature from the impounded wetland into the wetlands abutting Ashpole Swamp and its UNT. Based on the Previously

□ See Footnote # 3.
mentioned evidence, the delineated impoundment on-site is determined to have been excavated out of jurisdictional
wetlands directly abutting a PRPW (III.D. 4).

E. ISOLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE,
DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY
SUCH WATERS (CHECK ALL THAT APPLY):
☐ which are or could be used by interstate or foreign travelers for recreational or other purposes.
☐ from which fish or shellfish are or could be taken and sold in interstate or foreign commerce.
☐ which are or could be used for industrial purposes by industries in interstate commerce.
☐ Interstate isolated waters. Explain:
☐ Other factors. Explain:

Identify water body and summarize rationale supporting determination:

Provide estimates for jurisdictional waters in the review area (check all that apply):
☐ Tributary waters: linear feet width (ft).
☐ Other non-wetland waters: acres.
Identify type(s) of waters:
☐ Wetlands: acres.

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY):
☐ If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers
Wetland Delineation Manual and/or appropriate Regional Supplements.
☐ Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce.
☐ Prior to the Jun 2001 Supreme Court decision in “SWANCC,” the review area would have been regulated based solely on the
“Migratory Bird Rule” (MBR).
☐ Waters do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction. Explain:
☐ Other: (explain, if not covered above): Five non-jurisdictional ditches are located within the boundaries of the project area.
These ditches are discussed in detail on Basis Form 1 of 2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR
factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional
judgment (check all that apply):
☐ Non-wetland waters (i.e., rivers, streams): linear feet width (ft).
☐ Lakes/ponds: acres.
☐ Other non-wetland waters: acres. List type of aquatic resource:
☐ Wetlands: acres.

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such
a finding is required for jurisdiction (check all that apply):
☐ Non-wetland waters (i.e., rivers, streams): linear feet, width (ft).
☐ Lakes/ponds: acres.
☐ Other non-wetland waters: acres. List type of aquatic resource:
☐ Wetlands: acres.

SECTION IV: DATA SOURCES.

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked
and requested, appropriately reference sources below):
☐ Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: The project area is depicted on a sketch
prepared and submitted by ERM titled “FIGURE 1. WETLAND DELINEATION MAP / Freedom Solar Site / Nichols, Dillon
County, South Carolina,” and dated October 30, 2015.
☐ Data sheets prepared/submitted by or on behalf of the applicant/consultant.
☐ Office concurs with data sheets/delineation report.
☐ Office does not concur with data sheets/delineation report.
☐ Data sheets prepared by the Corps:
Lumber River Basin.
☐ USGS NHD data.

Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for
review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos.
USGS 8 and 12 digit HUC maps.

US Geological Survey map(s). Cite scale & quad name: Lakeview Quad: The USGS topographic survey information within Lakeview Quad depicts the project area as cleared uplands abutting a large wooded area to the west and bisected by a dashed blue line feature that flows into an UNT of Ashpole Swamp. A site visit conducted on October 26, 2015 revealed that the dashed blue line feature was an upland excavated ditch overgrown with vegetation, draining only uplands, therefore a non-jurisdictional feature. The delineated impoundment is depicted as a naturally low lying drainage area that flows towards an UNT of Ashpole Swamp.

USDA Natural Resources Conservation Service Soil Survey. Citation: Dillon County Soil Survey Sheet 32: Dillon County Soil Survey Information depicts the project area as being comprised of the following soil types: Persanti fine sandy loam which is a moderately well drained partially hydric soil, Fuquay sand which is a well drained non-hydric soil, Coxville fine sandy loam which is a poorly drained all hydric soil, Dothan loamy fine sand which is a well drained non hydric soil, Claredon loamy sand which is a moderately well drained partially hydric soil and Summerton loamy fine sand which is a well drained non-hydric soil. The delineated impoundment addressed on this form is mapped Summerton however a site visit conducted on October 26, 2015 revealed that the feature had been excavated in hydric soils.

National wetlands inventory map(s). Cite name: U21, PF04Bd, and PUBHx: The NWI depict the project area as majority agricultural uplands, however saturated palustrine forest that have been partially ditched or drained are depicted along the western project boundary and a feature mapped as palustrine unconsolidated bottom permanently flooded and excavated is located to the northeast corner of the site. The delineated impoundment addressed on this form is mapped as palustrine unconsolidated bottom permanently flooded and excavated.

State/Local wetland inventory map(s): .
FEMA/FIRM maps: .
100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929) .
Photographs: .
Aerial (Name & Date): Dillon County Aerial Index 99:1122:83 and SCNR 2006.
or .
Other (Name & Date): Sheets 1-12 of 12 of site photos taken and submitted by ERM titled "Appendix B / Photographic Log," and Site photos taken by the Corps dated October 26, 2015 .

Previous determination(s). File no. and date of response letter: .
Applicable/supporting case law: .
Applicable/supporting scientific literature: .
Other information (please specify): Dillon County 2005 LiDAR. LiDAR data reveals that the impoundment is located in a low lying depressional finger wetland feature that drains towards Ashpole Swamp.

NRCS WETS data for Dillon County: During a site visit conducted on October 26, 2015 climatic conditions were determined to be within the range of normal.

B. ADDITIONAL COMMENTS TO SUPPORT JD: This form addresses a 0.18 acre jurisdictional wetland impoundment located on a 55 acre tract. Limits of jurisdiction were established by the parameters set forth in the 1987 Wetland Delineation Manual, the 2010 Coastal Plain Supplement and the established OHWM. During a site visit conducted on October 26, 2015, the delineated impoundment was observed to have been excavated out of wetlands that continue off site and impounded by Ayers Loop Road. A culvert was observed under Ayers Loop Road and water was observed flowing from the impounded WOUS into off-site wetlands that are determined to abut Ashpole Swamp and an UNT of Ashpole Swamp based on a site visit, USGS topographic survey information, and Dillon County LiDAR.

Five upland excavated drainage ditches are located on-site. These ditches are documented on Basis Form 1 of 2.

One jurisdictional wetland is located on site and is documented on Basis Form 1 of 2.